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Philosophy is written in that great book whichever

lies before our gaze — I mean the universe —

but we cannot understand if we do not first learn the

language and grasp the symbols in which it is written.

The book is written in the mathematical language, and

the symbols are triangle, circles and other geometrical

figures, without the help of which it is impossible to

conceive a single word of it, and without which one

wonders in vain through a dark labyrinth.

Galileo Galilei (1564-1642)



Abstract

Instruments traded in the financial markets are getting more and more complex.
This leads to more complex derivative structures that are harder to analyse and risk
managed. These instruments cannot be traded or managed without the relevant
systems and numerical techniques.

The global economy is becoming more and more interlinked with trading between
countries skyrocketing. Due to the world trade, foreign exchange forwards, futures,
options and exotics are becoming increasingly commonplace in today’s capital mar-
kets.

The objective of these notes is to let the reader develop a solid understanding of
the current currency derivatives used in international treasury management with an
emphasis on the African continent. This will give participants the mathematical and
practical background necessary to deal with all the products on the market.

Before I came here I was confused about the subject.
Having listened to your lecture I am still confused.

But on a higher level.
Enrico Fermi (1901-1954)
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But the creative principle resides in mathematics.
In a certain sense, therefore, I hold it true that

pure thought can grasp reality, as the ancients dreamed.
Albert Einstein
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Chapter 1

Introduction

More than 22.4 billion of derivative contracts were traded on exchanges worldwide
in 2010 (11.2 billion futures and 11.1 billion options) against 17.8 billion in 2009,
an increase of 25%. The number of futures traded increased faster - up 35% - than
options - up 16%, according to statistics compiled by WFE, which annually conducts
a survey for the International Options Markets Association1 (IOMA).

“The strong volume in exchange-traded derivatives in 2010 indicate that reforms
in regulation of over-the-counter derivatives markets are causing participants to shift
some of their risk transfer activities to exchange-traded derivatives,” commented
Ronald Arculli, chairman of WFE and chairman of Hong Kong Exchanges and Clear-
ing. During the same period, Arculli noted that, according to Bank for International
Settlements (BIS) statistics, notional amounts outstanding of OTC Derivatives de-
creased by 13% between June 2009 and June 2010.

Currency derivatives remain the smallest section of the exchange-based derivatives
markets, with 2.3 billion contracts traded in 2010. However, driven by the Indian ex-
changes that accounted for 71% of the volumes traded in 2010, they have experienced
triple-digit growth (+144%). When Indian exchanges are removed from the statistics,
the growth rate of currency volumes in 2010 was still very strong (+36%.)

Currency derivatives is a growing business, especially so for developing markets.
Understanding the more complex nature of these markets is essential for all working in
the capital markets. With increased volatility in global markets following the global
credit and liquidity crisis, derivatives have again come to the forefront. Management
of Currency risks have once more been seen as a critical tool in today’s markets for
offering a vehicle for hedging or for providing profit opportunities in difficult markets.
This advanced course will provide a comprehensive analysis of Currency Options with
focus on pricing and structuring.

We start by giving an overview of the basic concepts of options and option pricing.
We will discuss the binomial model and volatility surfaces. In Chapter 2 we have an
in-depth look at hedging. We discuss the Greeks and see what they really mean to a

1http://www.advancedtrading.com/derivatives/229300554
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CHAPTER 1. INTRODUCTION 12

trader. We introduce the Impact Delta and Gamma which helps hedging when a skew
is prevalent. In Chapter 3 we compare OTC derivatives to exchange traded contracts.
We give a detailed analysis of how a derivatives exchange operates with all of its risk
measures.

Chapter 4 is an overview of derivatives and Islamic finance. It is currently a
topical issue. Due to the importance of volatility, Chapter 5 is devoted to volatility
skews. We first look at how we can generate a skew from traded data and then look
at the Vanna-Volga method widely used in FX markets.

The rest of the course is devoted to exotic options. We start start in Chapter 6
with the so-called ‘first generation exotics’ or vanilla exotic options. These include
Barrier, Digital, Forward Start and Asian options. Chapter 7 introduce the more
complex exotic options or so-called ‘second generation exotic’. These include Timers,
Variance Swaps, Range Accruals and Quantos.

In the last Chapter, Chapter 8 we discuss the pricing of exotic options under a
volatility skew. We introduce the concepts of Local Volatility and Implied Binomial
Trees.

1.1 Option Basics

There are two types of options: calls and puts. A call option gives the holder the
right, but not the obligation, to buy the underlying asset by a certain date for a
certain price.

A put option gives the holder the right, but not the obligation, to sell the under-
lying asset by a certain date for a certain price.

The price in the contract is known as the exercise price or strike price. The date
in the contract is known as the expiration, expiry, exercise or maturity date.

An option can not be obtained free of charge. There is a price attached to it called
a premium. The premium is the price paid for an option. The buyer of an option
pays a price for the right to make a choice — the choice to exercise or not.

Call and put options are defined in one of two ways: American or European. A
European option can only be exercised at the maturity date of the option whereas an
American option can be exercised at any time up and including the maturity date2. If
the holder of the option decides to exercise the option, this option becomes a simple
FX contract. The holder of the option will only exercise the option when the market
is in his favour, otherwise the option contract expires worthless.

2The terms European and American used here bear no relation to geographic considerations.
European options trade on American exchanges and American option trade on European exchanges.
We will later define some other option called Asian options, Bermudan options and Parisian options.
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1.2 Why trade FX Options versus the Spot FX?

Currency options have gained acceptance as invaluable tools in managing foreign ex-
change risk. One of the primary benefits for trading FX Options versus Spot FX
is that options provide investors with tremendous versatility including a wide range
of strike prices and expiration months available for trading. Investors can imple-
ment single and multi-leg strategies, depending on their risk and reward tolerance.
Investors can implement bullish, bearish and even neutral market forecasts with lim-
ited risk. FX Options also provide the ability to hedge against loss in value of an
underlying asset. Options are attractive financial instruments to portfolio managers
and corporate treasuries because of this flexibility.

Options can be a way for traders to limit their risk in a trade. For instance, if a
trader believes the EURUSD will move upwards, he may purchase a call at a premium
so that if the rate hits the option strike price he can exercise it. If the currency instead
moves against the trader, all that is lost is the premium.

In general we note that options expanded the universe of tradable financial in-
struments. The consequence is that hedges can be tailored more precisely to the risk
profile of the underlying and the risk can be managed more easily. Options allow an
investor to construct different payoff profiles. You can mimic your actual exposure by
trading in a portfolio of options. We will look at this in Chapter 8. All these benefits
can be grouped together into six benefits [Sh 10]

Benefit One: The Ability to Leverage

Options provide both individuals and firms with the ability to leverage. In other
words, options are a way to achieve payoffs that would usually be possible only at a
much greater cost. Options can cause markets to become more competitive, creating
an environment in which investors have the ability to hedge an assortment of risks
that otherwise would be too large to sustain.

Benefit Two: Creating Market Efficiency

Options can bring about more efficiency in the underlying market itself. Option
markets tend to produce information flow. Options enable investors to access and
trade on information that otherwise might be unobtainable or very expensive. It is
for instance difficult to short sell stock. This slows the process down in which adverse
information is incorporated into stock prices and make markets less efficient. It is,
however, easy to sell a future or put option.

Benefit Three: Cost Efficiency

Derivatives are cost efficient. Options can provide immense leveraging ability.An
investor can create an option position that will imitate the underlying’s position
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identically — but at a large cost saving.

Benefit Four: 24/7 Protection

Options provide relative immunity to potential catastrophic effects of gaps openings
in the underlyings. Consider a stop-loss order put in place to prevent losses below a
predetermined price set by the investor. This protection works during the day but
what happens after market close. If the market gaps down on the opening the next
day your stop-loss order might be triggered but at a price much lower than your
stop-loss price. You could end up with a huge loss. Had you purchased a put option
for downside protection you will also be protected against gap risk

Benefit Five: Flexibility

Options offer a variety of investment alternatives. You can hedge a myriad of risks
under specific circumstances. We will look at structuring and constructing different
payoff profiles later on in Chapter 8.

Benefit Six: Trading Additional Dimensions

Implementation of options opens up opportunities of additional asset classes to the
investor that are embedded in options themselves. Options allow the investor not
only to trade underlying movements, but to allow for the passage of time and the
harnessing of volatility. The investor can take advantage of a stagnant or a range-
bound market.

1.3 The Black & Scholes Environment

To obtain an understanding of what the Black & Scholes formula means, it is very
important to know under what conditions the Black & Scholes formula hold. Black &

Scholes (and researchers before them) understood very well that the market is com-
plex. To be able to describe it mathematically and to enable them to obtain a useful
model, they knew they had to simplify the market by making certain assumptions3.
The following is a list of the more important assumptions Black & Scholes made in
their analysis [MS 00]:

• The underlying asset follows a lognormal random walk. This was not a new
assumption and was already proposed by Bachelier in 1900.

• The efficient market hypothesis is assumed to be satisfied. In other words, the
markets are assumed to be liquid, have price-continuity, be fair and provide all

3What inevitably happens after such a “simple” model has been proposed and understood well,
is that people start to relax certain assumptions to move closer to a more realistic model.
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players with equal access to available information. This implies that there are
no transaction costs.

• We live in a risk-neutral world i.e., investors require no compensation for risk.
The expected return on all securities is thus the riskfree interest rate with the
consequence that there are no arbitrage opportunities. This was one of Black

& Scholes ’ insights and is known as risk-neutral valuation.

• The stock’s volatility is known and does not change over the life of the option.
In statistical talk we say the means and variances of the distribution or process
is “stationary”.

• The short-term interest never changes.

• Short selling of securities with full use of the proceeds is permitted.

• There are no dividends.

• Delta hedging is done continuously. This is impossible in a realistic market but
makes their analysis possible.

The above describes the so-called Black & Scholes environment within which they
did their analysis.

In general we can say that Black & Scholes assumed that the financial market is a
system that is in equilibrium. With equilibrium we mean that, if there are no outside
or exogenous influences, then the system is at rest - everything thus balances out;
supply equals demand. Any distortion or perturbation is thus quickly handled by the
market players so as to restore the equilibrium situation. More so, the systems reacts
to the perturbation by reverting to equilibrium in a linear fashion. The system reacts
immediately because it wishes to be at equilibrium and abhors being out of balance
[Pe 91]. An option’s price is thus the value obtained under this equilibrium situation.

These assumptions are very restrictive, as a matter of fact Black went on to say
that “Since these assumptions are mostly false, we know the formula must be wrong”
[Bl 88]. But, he might not be far from the truth when he further stated that “But we
may not be able to find any other formula that gives better results in a wide range
of circumstances.”

1.4 The Seminal Formula

The seminal formula is4

V (S, t) = φ
(

Se−dτN(φx) − Ke−rτN(φy)
)

(1.1)

4Clark gives an extensive review of the derivation of the Black & Scholes equation [Cl 11]
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where
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√

τ .

where φ is a binary parameter defined as

φ =

{

1 for a call option
−1 for a put option.

(1.2)

Here, S is the current spot stock price, K is the strike price, d is the dividend yield,
σ2 is the variance rate of the return on the stock prices, τ = T − t is the time to
maturity and N(x) is the cumulative standard normal distribution function5. Note
that Eq. 1.1 in general format is; it holds for both calls and puts.

Equation (1.1) is not the original formula as published by Black & Scholes . They
considered stock that do not pay dividends, i.e. d = 0. This formula is called the
modified Black & Scholes equation adapted by Merton in 1973 to include a continuous
dividend yield d [Me 73]. He did this by correctly assuming that an option holder
does not receive any cash flows paid by the underlying instrument. This fact should
be reflected in a lower call price or a higher put price. The Merton model provides a
solution by subtracting the present value of the continuous cash dividend flow from
the price of the underlying instrument. The original equation had d = 0.

The beauty of this formula lies in the fact that one does not need to estimate
market expectation or risk preferences. This was a revolutionary improvement over
its predecessors. There are 3 parameters that needs to be estimated: the riskfree
interest rate; the dividend yield and the variance or volatility. Note that the volatility
needed in the Black & Scholes formula is the volatility of the underlying security that
will be observed in the future time interval τ - volatility thus needs to be predicted
[MS 00]. Black & Scholes, however, assumed that the variance is known and that it
is constant.

1.5 A Currency Option Model

Garman and Kohlhagen provided a formula for the valuation of foreign currency
options [GK 83]. They followed the Black & Scholes lines of thought but set their
riskless hedge portfolio up by investing in foreign bonds, domestic bonds and the
option. They had some more assumptions though

5Note that

N(x) =
1√
2π

∫ x

−∞

e−a2/2da

but it can be determined numerically.
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Figure 1.1: Information necessary to price an option.

• It is easy to convert the domestic currency into the foreign currency;

• We can invest in foreign bonds without any restrictions.

Their analysis led them to the following Black & Scholes -type equation

V (S, K, τ, σ, rd, rf , φ) = φ
(

Se−rf τN(φx) − Ke−rdτN(φy)
)

(1.3)

where

x =

[

ln
S

K
+

(

rd − rf +
1

2
σ2

)

τ

]

1

σ
√

τ

y = x − σ
√

τ (1.4)

with φ defined in Eq. 1.2. Note that S is the current spot exchange rate, K is the
strike price, rf is the foreign interest rate, rd is the domestic interest rate σ2 is the
variance rate of the return on the exchange rate, τ = T −t is the time to maturity and
N(x) is the cumulative standard normal distribution function. We note that Eq. 1.3
is exactly the Black & Scholes equation given in Eq. 1.1 where we have substituted
d = rf and r = rd. To price an option we thus need six quantities as depicted in Fig.
1.1

Note that V (S, K, t, σ, rd, rf , φ) will sometimes be shortened to V (S, τ) or just
V (S). V denotes the value of a Call or Put. In future we sometimes also have

C(S,K, τ, σ, rd, rf ) = V (S, K, t, σ, rd, rf , +1) ⇒ Call (1.5)

P (S,K, τ, σ, rd, rf ) = V (S, K, t, σ, rd, rf ,−1) ⇒ Put.



CHAPTER 1. INTRODUCTION 18

1.6 Options on Forwards and Futures

In 1976 Fischer Black presented a model for pricing commodity options and options
on forward contracts [Bl 76]. Define a forward contract’s value to be

FT = F = Se(rd−rf )T (1.6)

with S the spot currency exchange rate at the start of the forward contract. Black

showed that a futures contract can be treated in the same way as a security providing
a continuous dividend yield equal to the riskfree interest r. This means that we can
use Eq. 1.1 where we have r = d and we use the forward price F as the price of the
underlying instead of the cash price S. Turning to currencies and the Garman and
Kohlhagen model we put rd = rf .

The easiest way in obtaining Black’s formula is to invert Eq. 1.6 to obtain S and
substitute this into Eq. 1.3 to give

V (F, t) = φe−rdτ [FN(φx) − KN(φy)] (1.7)

if Td = Tf .

1.7 Settlement Adjustments

Foreign exchange spot transactions generally settle in two business days. There are
thus four dates of importance for option contracts: today, spot, expiry and delivery
[Cl 11]. The delivery date is usually set to the expiry spot, i.e., so that delivery bears
the same spot settlement relationship to expiry. This means that if

spot = today + 2 (T+2), then delivery = expiry + 2 (T+2)

as well. In the Black & Scholes equation given in Eq. 1.1 we defined the time to
expiry by stating τ = T − t where t is the trade date and T is the expiry date. Now
that we have four dates, which ones are the correct ones to use when we price options?
On a time line we have

Ttoday → Tspot −→ Texp → Tes

and we usually have the delivery time Tdel = Tes.
To understand why this is important, we refer back to the actual cash flows. The

premium will only be received on Tspot although we enter into the contract at Ttoday.
The premium should thus reflect the premium today at Ttoday. Also, if the option is in
the money at expiry, the profit will flow on Tdel only. Now it becomes tricky because
the volatility applicable is the volatility over the period Ttoday ≤ t ≤ Texp because
that is the real terms of the agreement. To price the option correctly, we price it from
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cash flow to cash flow thus from Tspot to Tdel. We then discount the premium back
from Tdel to Ttoday and then forward value to Tspot.

This changes the Black & Scholes formula somewhat to

V (S, t) = Se−rf (Tes−Tspot)N(φx) − Ke−rd(Tes−Tspot)N(φy) (1.8)

where

x =

[

ln
S

K
+ (rd − rf ) (Tes − Tspot) +

1

2
σ2 (Texp − Ttoday)

]

1

σ
√

Texp − Ttoday

y = x − σ
√

Texp − Ttoday.

If τ = Tes − Tspot = Texp − Ttoday Eq. 1.8 is exactly the same as Eq. 1.3.
If one extract the relevant interest rates from zero coupon yield curves, note the

following: the interest rates should be the forward interest rates that hold from Tspot

to Tes. Graphically we depict this in Fig. 1.2.

Today tspot tes

¶ ³

rspot
¶ ³

rspot→es

¶ ³

res

Figure 1.2: The correct interest rates for a currency option.

1.8 Put-Call-Parity

In the previous chapter we looked at the formulas available for trading European
options. Can we say anything about a relationship between puts and calls?

Put-Call-Parity is a very important relationship that is distribution-free. It rela-
tionship that exists between the prices of European put and call options where both
have the same underlier, strike price and expiry date. It is given by

C + Ke−rτ = P + Se−dτ . (1.9)

Note, we used the same notation as in Eq. 1.1 where the strike price K = X and we
included a dividend yield d.

This is a fundamental arbitrage relationship which forces call and put prices to
be tied to their underlying market and to each other. Note that it is not based on
any option pricing model. It was derived purely using arbitrage arguments. Put-call
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parity offers a simple test of option pricing models. Any option pricing model that
produces put and call prices that do not satisfy put-call parity must be rejected as
unsound. Such a model will suggest trading opportunities where none exist. Put-
call-parity is used to create synthetic securities.

From Eq. 1.9 and the Garman and Kohlhagen model given in Eq. 1.3 we obtain
Put-Call-Parity for currency options to be

C + Ke−rdτ = P + Se−rf τ . (1.10)

From Eq. 1.7 we deduce Put-Call-Parity for a currency option on a forward or
futures contract is given by

C + Ke−rdτ = P + Fe−rdτ (1.11)

⇒ C − P = (F − K) e−rdτ .

1.9 Option Dynamics and Risk Managements

If you have traded a few options but are relatively new to trading them, you are
probably battling to understand why some of your trades aren’t profitable. You start
to realise that trying to predict what will happen to the price of a single option
or a position involving multiple options as the market changes can be a difficult
undertaking. You experience the forces of the market and see that an option price
does not always appear to move in conjunction with the price of the underlying
asset or share. If you want to trade in any financial instrument, it is important to
understand what factors contribute to the movement in the price of that instrument,
and what effect they have.

Option prices are influenced by six quantities or variables:

• the current FX rate;

• the strike price;

• the time to expiration;

• the local riskfree interest rate;

• the foreign riskfree interest rate;

• the volatility.

If you want to manage the risk associated with an option you need to understand the
dynamics of option values in relation to these quantities.

Futures traders are almost exclusively interested in the direction of the market.
Option traders, on the other hand, must also take note of how fast the market is
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moving or will move. If both futures and options traders take a long market position
and the market does move higher, the futures trader is assured of a profit while the
option trader may show a loss. To maintain a profit margin the option trader must
analyze manage the risk associated with an option at once. He needs to understand
the dynamics of option values in relation to these six quantities.

Because this is a difficult task we resort to theoretical models. The goal of theo-
retical (and numerical) evaluation of option prices is to analyze an option based on
current market conditions as well as expectations about future conditions. This eval-
uation then assists the trader in making an intelligent decision on an option [Na 88].
Such an analysis can be done; all that is needed is information that characterizes the
probability distribution of future FX rates and interest rates!

Here we consider what happens to options prices when one of these quantities
changes while the others remain fixed/constant. We draw the relevant graphs for
puts and calls and deduct from there the option’s behaviour. The following have
to be remembered: the FX rate, strike and time to expiry are known quantities.
The riskfree interest rates and the volatility are mostly unknown. These have to be
estimated. We will return to these later.

Please note that we use the same notation as for the currency option model in
Eq. 1.3.

1.9.1 The Greeks

When we talk about these six variables in relation to option pricing, we call them
the Greeks. You might have heard terms such as Delta or Vega and you immediately
thought option trading is too difficult or risky.

However, what you will learn in this lesson is that learning things the ’Greek’ way
is like knowing the baby steps towards potential gains. While many traders focus on
spot prices and trends, options pricing and its unpredictability seems to be a bigger
problem. For one, the value of options is so uncertain that sometimes trends and
factors provide no help at all. If you know about technical analysis of shares, try
some of those analyses on option values. You will quickly realise that momentum or
stochastics are of no use at all.

Further to the above, we pile on the fact that the Greeks cannot simply be looked
up in your everyday option tables nor will you see them on screen where you see the
option bids and offers. They need to be calculated which means you will need access
to a computer or electronic calculator that calculates them for you.

The Delta

The delta is a measure of the ratio of option contracts to the underlying asset in order
to establish a neutral hedge. We can also state that the ∆ is a measure of how fast
an option’s value changes with respect to changes in the price of the underlying asset.
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From 1.3 we have

∆ =
∂V

∂S
= φe−rf τN(φx). (1.12)

From this we see that if the option is far out-of-the-money ∆ ≃ 0, however if the
option is deep in-the-money we have ∆ ≃ φ. ∆ is thus the probability that the
option will end in-the-money.

If you do not have a Black & Scholes calculator giving the Delta, you can easily
calculate the numerical Delta as follows

∆num = (V (S + 0.0001) − V (S)) × 10000.

Just add one pip to the price. Here we multiply by 10,000 because of the pip size.

The Premium-Included Delta

If a Nairobi based FX trader wants to hedge his USDKES book in Shillings, he will
use the Delta given in Eq. 1.12. However, if a trader has a USDKES book, but the
trader sits in New York, his profits and losses will be computed in Dollars and what
he really aim at is hedging the option values converted into Dollars. Hence, if V is
the option value in Shillings and S is the USDKES spot exchange rate, V/S is the
option value converted into Dollars. What the New York trader wants to hedge is

∂ V
S

∂S
.

This is called the premium-included Delta and is given by [Ca 10]

∆pi = φ
K

S
e−rdτN(φy). (1.13)

Elasticity

The elasticity (denoted by Λ) is the elasticity of an option and shows the percentage
change in its value that will accompany a small percentage change in the underlying
asset price such that

Λc =
∂C

∂S

S

C
=

S

C
∆C = e−rf τ S

C
N(x) > 1

Λp =
∂P

∂S

S

P
=

S

P
∆P = e−rf τ S

P
N(y) < 0.

The elasticity increases when the FX rate decreases. Λ also increases as time to
expiration decreases. A call will thus be more sensitive to FX rate movements ‘in
percentage terms’, the shorter the time remaining to expiration [Ko 03].
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Gamma

The Γ is the rate at which an option gains or loses deltas as the underlying asset’s
price move up or down. It is a measure of how fast an option is changing its market
characteristics and is thus a useful indication of the risk associated with a position.
We have

Γ =
∂2V

∂S2
=

∂∆

∂S
= e−rf τ N ′(x)

Sσ
√

τ
(1.14)

where N ′(x) is the standard normal probability density function and the cumulative
normal’s derivative given by

N ′(x) =
1√
2π

exp

(

−x2

2

)

. (1.15)

If the option is far out-of-the-money or far in-the-money, Γ ≃ 0. If Γ is small, ∆
changes slowly and adjustments to keep the portfolio ∆-neutral need only be made
relatively infrequently. If Γ is large, however, changes should be made frequently
because the ∆ is then highly sensitive to the price of the underlying asset. This
happens when the FX rate is close to the strike price with very little time to expiry
— such as in the morning of the option expires in the afternoon.

Speed

This quantity measures how fast the Γ is changing. It is given by

∂3V

∂S3
=

∂Γ

∂S
= −erf τ N ′(x)

S2σ
√

τ

(

x

σ
√

τ
+ 1

)

(1.16)

with N ′(x) define in Eq. 1.15.

Theta

Both puts and calls lose value as maturity approaches. The Θ is the “time decay
factor” and measures the rate at which an option loses its value as time passes such
that

Θ =
∂V

∂τ
= −e−rf τ SN ′(x)σ

2
√

τ
+ φ

[

rfSe−rf τN(φx) − φrdKe−rdτN(φy)
]

(1.17)

The size of the Γ correlates to the size of the Θ position where a large positive Γ
goes hand in hand with a large negative Θ. A large negative Γ correlates with a
large positive Θ. This means that every option position is a trade-off between market
movement and time decay. Thus if Γ is large market movement will help the trader
but time decay will hurt him and vice versa.
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Some market participants calculates the numerical time decay defined as

Time Decay = V (t + i) − V (t) (1.18)

where i is a day count parameter. If we put i = 1, V (t + 1) means the value of the
option tomorrow keeping all the other parameters the same. The time decay is thus
just the value of the option tomorrow minus the value today. The time decay over a
weekend can be obtained by putting i = 3.

Charm

Charm is the change of ∆ with time

∂2V

∂S∂τ
=

∆

∂τ
= φe−rf τ

[

N ′(x)
2(rd − rf )τ − yσ

√
τ

2τσ
√

τ
− rfN(φx)

]

(1.19)

Color

Color is the change of Γ with time

∂3V

∂S2∂τ
=

Γ

∂τ
= −e−rf τ N ′(x)

2Sτσ
√

τ

[

2rfτ + 1 +
2(rd − rf )τ − yσ

√
τ

2τσ
√

τ
x

]

(1.20)

Vega

The Vega measures the change in the option’s price as volatility changes such that

V ega =
∂V

∂σ
= Se−rf τ

√
τN ′(x) (1.21)

“At-the-money” options are the most sensitive to volatility changes. Some market
participants calculates the numerical Vega defined as

Vega Numerical = V (σup) − V (σ)

where σup = σ + 1% — the current volatility adjusted upwards by 1%.

Volga and Vanna

The Volga measures the speed of the change of the Vega

V olga =
∂2V

∂σ2
= Se−rf τ

√
τN ′(x)

xy

σ
. (1.22)

The Volga is also called the Vomma or Volgamma — due to the definition of the Γ.
The Vanna measures how the Vega changes if the spot price changes

V anna =
∂2V

∂σ∂S
=

∂V ega

∂S
= −erf τN ′(x)

y

σ
. (1.23)
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Rho

The ρ measures the change of an option’s price to changes in interest rates such that

ρd =
∂V

∂rd

= φKτe−rdτN(φy) (1.24)

ρf =
∂V

∂rf

= −φSτe−rf τN(φx). (1.25)

An increase in interest rates will decrease the value of an option by increasing carrying
costs. This effect is, however, outweighed by considerations of volatility, time to
expiration and the price of the underlying asset.

Dual Delta and Gamma

These quantities measure the changes in option prices as the strike changes

Dual ∆ = ∆K = =
∂V

∂K
= −φe−rdτN(phiy) (1.26)

Dual Γ = ΓK =
∂2V

∂K2
= e−rdτ N ′(y)

Kσ
√

τ
. (1.27)

1.9.2 The Gamma and Theta Relationship

From the Black & Scholes differential equation we have [Hu 06]

1

2
σ2S2Γ + (rd − rf )S∆ + Θ = (rd − rf )V.

For a delta-neutral position we have have

1

2
σ2S2Γ + Θ = (rd − rf )V.
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1.10 Useful Relationships

1.10.1 Identities

The following identities are very useful when we do differentiation in calculating the
theoretical Greeks for Black & Scholes -type formulas [Wy 06]

∂x

∂σ
= −y

σ
∂y

∂σ
=

x

σ
∂x

∂rd

=
∂y

∂rd

=

√
τ

σ
(1.28)

∂x

∂rf

=
∂y

∂rf

= −
√

τ

σ

Se−rf τN ′(x) = Ke−rdτN ′(y)

Some identities also hold for the cumulative normal distribution function

∂N(φx)

∂S
=

φN ′(φx)

Sσ
√

τ

∂N(φy)

∂S
= −φN ′(φy)

Sσ
√

τ
(1.29)

∂N ′(x)

∂x
= −xN ′(x).

1.10.2 Symmetries

In Eq. 1.10 we wrote down the Put-Call-Parity relationship. There is also a Put-Call
value symmetry for puts and calls with different strikes such that (where we use the
same notation as set out in Eq. 1.6)

C(S, K, τ, σ, rd, rf ) =
K

Se(rd−rf )τ
P

(

S,

(

Se(rd−rf )τ
)2

K
, τ, σ, rd, rf

)

⇒ C(S, K, τ, σ, rd, rf ) =
K

F
P

(

S,
F 2

K
, τ, σ, rd, rf

)

. (1.30)

The symmetry for puts and calls on a forward or futures contract is quite simple

C(F, K, τ, σ, rd, rf ) = P (F, K, τ, σ, rd, rf ). (1.31)

Another useful symmetry between puts and calls is given by [Ha 07]

C(S, K, τ, σ, rd, rf ) = P (−S,−K, τ,−σ, rd, rf ). (1.32)
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Let’s say we wish to measure the value of the underlying in a different unit.
That will effect the option value. The new option price can be calculated if we use
the following state space transformation (also known as space homogeneity) [Ha 07,
Wy 06]

a × V (S, K, τ, σ, rd, rf , φ) = V (a × S, a × K, τ, σ, rd, rf , phi) ∀ a > 0 (1.33)

where a is some constant.
From Eqs. 1.32 and 1.33 we deduce the follwing

C(S,K, τ, σ, rd, rf ) = −P (S,K, τ,−σ, rd, rf )

P (S,K, τ, σ, rd, rf ) = −C(S, K, τ,−σ, rd, rf ). (1.34)

This is also know as “put-call-supersymmetry”.
The symmetries mentioned here simplify coding and implementation of option

pricing calculators.

1.10.3 Put-Call-Delta Parity

If we differentiate the put-call-parity relationship in Eq. 1.10 with respect to S we
get

∆C = ∆P + e−rf τ . (1.35)

For an option on a future we get from Eq. 1.12

∆C = ∆P + e−rdτ . (1.36)

Now, look at the space homogeneity relationship in Eq. 1.33, and we differentiate
both sides with respect to a and we then set a = 1, we get [Wy 06]

V = S∆ + K∆K (1.37)

where ∆ is the ordinary Delta and ∆K is the dual delta defined in Eq. 1.27. This
again can help in simplifying coding and option calculators. They also help in double
checking or verifying the Greek numbers. These homogeneity methods can easily be
extended to other more complex options.

1.10.4 Symmetries for Currency Options

By combining the Rho Greeks given in Eqs. 1.25 and 1.25 we obtain the rates sym-
metry

∂V

∂rd

+
∂V

∂rf

= −τV

⇒ ρd + ρf = −τV. (1.38)
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We also have foreign-domestic-symmetry given by

1

S
V (S, K, τ, σ, rd, rf , φ) = KV

(

1

S
,

1

K
, τ, σ, rd, rf ,−φ

)

(1.39)

or
1

S
C(S, K, τ, σ, rd, rf ) = KP

(

1

S
,

1

K
, τ, σ, rd, rf

)

. (1.40)

This equality is one of the faces of put-call-symmetry. The reason is that the value
of an option can be computed both in a domestic as well as foreign scenario.

1.11 The Volatility Skew

The Black and Scholes model assumes that volatility is constant. This is at odds with
what happens in the market where traders know that the formula misprices deep in-
the-money and deep out-the-money options. The mispricing is rectified when options
(on the same underlying with the same expiry date) with different strike prices trade
at different volatilities — traders say volatilities are skewed when options of a given
asset trade at increasing or decreasing levels of implied volatility as you move through
the strikes. The empirical relation between implied volatilities and exercise prices is
known as the “volatility skew”.

The volatility skew can be represented graphically in 2 dimensions (strike versus
volatility). The volatility skew illustrates that implied volatility is higher as put
options go deeper in the money. This leads to the formation of a curve sloping
downward to the right. Sometimes, out-the-money call options also trade at higher
volatilities than their at-the-money counterparts. The empirical relation then has the
shape of a smile, hence the term “volatility smile”. This happens most often in the
currency markets.

1.11.1 Universality of the Skew

The skew is a universal phenomenon. It is is seen in most markets around the globe.
One of the best and comprehensive studies to confirm this was done by Tompkins in
2001 [To 01]. He looked at 16 different options markets on financial futures comprising
four asset classes: equities, foreign exchange, bonds and forward rate agreements
(FRA’s). He compared the relative smile patterns or shapes across markets for options
with the same time to expiration. His data set comprised more than 10 years of option
prices spanning 1986 to 1996.

Tompkins concluded that regularities in implied volatility surfaces exist and are
similar for the same asset classes even for different exchanges. A further result is that
the shapes of the implied volatility surfaces are fairly stable over time. We show his
results in Fig. 1.3 for currencies. South Africa’s stock indices and currencies exhibit
similar shapes as those determined in this study. Note the ‘smiles’ in all markets.
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Figure 1.3: Volatility surfaces for currencies.
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1.11.2 Why do we observe a Skew?

In 1972 Black and Scholes mentioned in a paper “the historical estimates of the
variance include an attenuation bias - the spread of the estimated variance is larger
than the true variance” [BS 72]. This would imply that for securities with a relatively
high variance (read volatility), the market prices would imply an underestimate in
the variance, while using historical price series would overestimate the variance and
the resulting model option price would be too high; the converse is true for relative
low variance securities. Black and Scholes further showed that the model performed
very well, empirically, if they use the right variance. In 1979, Macbeth and Mervile

extended this empirical research of Black and Scholes and also showed that the skew
existed [MM 79]. In this paper, Macbeth and Merville reported that the Black &

Scholes model undervalues in-the-money and overvalues out-the-money options. At
that point in time the skew wasn’t pronounced but the market crash of October 1987
changed all of that.

If one looks at option prices before and after October 1987, one will see a distinct
break. Option prices began to reflect an “option risk premium” — a crash premium
that comes from the experiences traders had in October 1987. After the crash the
demand for protection rose and that lifted the prices for puts; especially out-the-
money puts. To afford protection, investors would sell out-the-money calls. There is
thus an over supply of right hand sided calls and demand for left hand sided puts —
alas the skew. A skew represents the market’s bias toward calls or puts.

The skew tells us there exists multiple implied volatilities for a single underlying
asset. This should be somewhat disconcerting. How can the market be telling us
that there is more than one volatility for the asset? The real phenomenon underlying
volatility skews is that either [Ma 95]

• market imperfections systematically prevent prices from taking their true Black

& Scholes values or

• the underlying asset price process differs from the lognormal diffusion process
assumed by the Black & Scholes model6.

These two points show us there is something wrong with the Black-Scholes model,
which is that it fails to consider all of the factors that enter into the pricing of an
option. It accounts for the stock price, the exercise price, the time to expiration, the
dividends, and the risk-free rate. The implied volatility is more or less a catch-all
term, capturing whatever variables are missing, as well as the possibility that the
model is improperly specified or blatantly wrong. The volatility skew is thus the
market’s way of getting around Black and Scholes’s simplifying assumptions about
how the market behaves.

6Stochastic volatility models closer to the truth.
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1.11.3 Shapes of the skew

There are three distinct shapes

• Supply Skew: The supply skew is defined by higher implied volatility for
lower strikes and lower volatility for higher strikes. Supply refers to the natural
hedging activity for the major players in the market who have a supply of
something they need to hedge. Stock Index and interest rate markets have
supply skews. The natural hedge for stock owners is to buy puts in order to
protect the value of their “supply” of stock and sell calls to offset the puts’ prices
— collars. This natural action in the marketplace determines the structure of
the skew. This type of skew is also known as a ‘smirk’.

• Demand Skew: Demand skews have higher implied volatility at higher strikes
and lower implied volatility at lower strikes. The natural hedger in demand
markets is the end user. The “collar” for a demand hedger is to buy calls and
sell puts. The grain markets and energy markets are good examples of demand
skews. This type of skew is also known as a ‘hockey stick’.

• Smile Skew: The third type of skew is called a smile skew. The smile skew
is illustrated by higher implied volatility as you move away from the at-the-
money strike. The at-the-money strike would have the lowest implied volatility
while the strikes moving up and down would have progressively higher implied
volatility. The smile skew is generally only observed in the currency markets.
The natural hedger has to hedge currency moves in either direction depending
of whether they have accounts payable or receivable in the foreign currency.

We show these shapes in Figs. 1.4. Note that the EURUSD smile is symmetric around
the ATM. Both currencies are perceived to be stable with similar risks. However, due
to the currency being a pair, the risk is that either currency of the exchange rate can
collapse. This means that the smile can be skewed to one side due to the country
risk or stability of a particular exchange rate, e.g. the markets perceive the Kenyan
country risk as being higher than the USD or Euro country risk. Look at the shape of
the smile of the Brazilian Real and Euro in Fig. 1.5 [DW 08]. It is not symmetrical
around the ATM. This was also shown in Fig. 1.4. This shows that while indices
across the globe mostly have similar shaped skews, the skews for different currency
pairs can be vastly different.

1.11.4 Delta Hedging and the Skew

Another view on the skew is the fact that if the markets go down they tend to become
more volatile. Equity markets crash downward but hardly ever ‘crash’ or gap upward.
However, the currency market with its smile do ‘crash’ upward and downward. This
alone does not explain the skew as realised volatility is the same regardless of any
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Figure 1.4: Different shape currency skews.
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Figure 1.5: The smile for the BRLEUR which is not symmetrical.

strike price. The existence of the skew is apparently telling us that this increase in
volatility has a bigger impact on lower strike options than on higher strike options.

The reason behind this becomes apparent when thinking in terms of realised
gamma losses as a result of rebalancing the delta of an option in order to be delta
hedged [DW 08]. In a downward spiraling market the gamma on lower strike option
increases, which combined with a higher realised volatility causes the option seller to
rebalance the portfolio more frequently, resulting in higher losses for the option seller.
Naturally the option seller of lower strike options wants to get compensated for this
and charges the option buyer by assigning a higher implied volatility to lower strikes.
This principle applies regardless of the of the in- or out-of-the-moneyness of an op-
tion. Whether it is a lower strike in-the-money call or a lower strike out-the-money
put, makes no difference from a skew perspective. Indeed if there were a difference
there would be an arbitrage opportunity.

1.11.5 The Term Structure of Volatility

Another aspect of volatility that is observed in the market is that at-the-money op-
tions with different expiries trade at different volatilities. The at-the-money volatil-
ities for different expiry dates are usually decreasing in time meaning shorter dated
options trade at higher volatilities to longer dated ones. However, since the 2008
financial crisis we see the term structure tend to slope upward more often. This pro-
vides another method for traders to gauge cheap or expensive options. A downward
sloping term structure is natural in the market because short dated downside options
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need to be delta hedged more often resulting in higher losses — downside short dated
options have higher Gammas than long dated ones.

The term structure of volatility arises partly because implied volatility in short
options changes much faster than for longer options and partly due to the assumed
mean reversion of volatility. The effect of changes in volatility on the option price is
also less the shorter the option.

It is well-known that volatility is mean reverting; when volatility is high (low) the
volatility term structure is downward (upward) sloping. We therefore postulate the
following functional form for the ATM volatility term structure

σatm(τ) =
θ

τλ
. (1.41)

Here we have

• τ is the months to expiry,

• λ controls the overall slope of the ATM term structure; λ > 0 implies a down-
ward sloping ATM volatility term structure, whilst a λ < 0 implies an upward
sloping ATM volatility term structure, and

• θ controls the short term ATM curvature.

We show the current term structure for USDZAR in Fig. 1.11.5)

Figure 1.6: The USDZAR market fitted at-the-money volatility term structure during
February 2011.
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Moneyness Mar-11 Jun-11 Sep-11 Des-11

70% 3.515% 8.263% 5.376% 3.556%
75% 4.873% 5.327% 3.542% 1.929%
80% 6.745% 2.634% 1.618% 0.535%
85% 7.460% 0.561% 0.062% -0.439%
90% 5.655% -0.561% -0.687% -0.815%
95% 2.431% -0.704% -0.628% -0.618%
100% 0.000% 0.000% 0.000% 0.000%
105% 0.082% 1.401% 0.982% 0.900%
110% 2.404% 3.266% 2.215% 1.996%
115% 6.193% 5.340% 3.625% 3.215%
120% 10.678% 7.372% 5.137% 4.485%
125% 15.087% 9.106% 6.678% 5.731%
130% 18.660% 10.298% 8.173% 6.887%

Table 1.1: The official floating Yield-X volatility skew for USDZAR during February
2011

1.11.6 What is a Volatility Surface?

Combining the ATM term structure of volatility and the skew per expiry date, will
render a 3 dimensional graph (time to expiry versus strike versus volatility). This is
known as the volatility surface.

1.11.7 Skews in South Africa

In Table (1.1) we give the February 2011 volatility surface for the USDZAR contracts
traded on Yield-X. We show the skew on a relative or floating basis where the ATM
strikes are given as 100% and the ATM floating volatilities are given as 0%. The
first column shows the percentage of moneyness7 and the second column shows the
relative volatility i.e., what number has to be added or subtracted from the ATM
volatility to give the real volatility.

The current skews are plotted in Figure 1.7. Yield-X supplies the skews on a
monthly basis. The currency option market in South Africa is new and the liquidity
not great. Yield-X does not generate these itself. They are supplied by a London
based company called ‘Super Derivatives8.’ There are other companies who supply
skew data to market players. Another one active in the South African market is called
‘Markit9.’

7Moneyness shows how far the strike is from the ATM strike.
8https://www.superderivatives.com/
9http://www.markit.com/en/?
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Figure 1.7: USDZAR volatility surface during February 2011.

So what happens if the strike price lies between two strikes given in the skew?
Then we have to interpolate. We do straight line linear interpolation and this is
explained next.

1.12 Sticky Volatilities

Sticky strike and sticky delta are trader phrases to describe the behaviour of volatility
when the price moves. It can be shown that both the sticky Delta and sticky strike
rules produce arbitrage opportunities should the volatility surface move as predicted
by them. This is the reason why they are mainly regarded as quoting mechanisms
and not expressions of actual behaviours of volatility surfaces [Ca 10].

1.12.1 Sticky Delta

In the sticky delta model (also known as a relative or floating skew), the implied
volatility depends on the moneyness only (spot divided by strike - S/K). The ATM
implied volatility does not change as the underlying spot changes. This entails that
the smile floats with moneyness (or Delta) as spot is shifted such that the delta of
options are preserved. This means that when the underlying asset’s price moves and
the Delta of an option changes accordingly, a different implied volatility has to be
used in the Black & Scholes model. In this model, moneyness is plotted against
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Delta Mar-11 Jun-11 Sep-11 Des-11

∆p
25 1.4873% -0.7198% -0.0999% -0.3640%

∆p
30 1.1899% -0.5758% -0.0799% -0.2912%

∆p
35 0.8924% -0.4319% -0.0600% -0.2184%

∆p
40 0.5949% -0.2879% -0.0400% -0.1456%

∆ 0.0000% 0.0000% 0.0000% 0.0000%
∆c

40 0.0579% 0.7247% 1.3071% 3.0039%
∆c

35 0.0672% 1.0569% 1.6176% 3.0032%
∆c

30 0.0764% 1.3891% 1.9281% 3.0026%
∆c

25 0.0857% 1.7213% 2.2386% 3.0020%

Table 1.2: The official Yield-X volatility skew for USDZAR for February 2011 using
Deltas instead of moneyness

relative volatility (difference in volatility from the ATM volatility). The sticky-delta
rule quantifies the intuition that the current level of at-the-money volatility — the
volatility of the most liquid options — should remain unchanged as spot changes. We
listed such a skew in Table 1.1. We show the same skew in Table 1.2 where we map
the volatilities against the put Deltas on the left of the ATM and call Deltas on the
right of the ATM.

1.12.2 Sticky Strike

In a sticky strike model (“absolute skew”), the implied volatility of each option is
constant as the spot changes or the volatility of a given strike is unaffected by a
change in price. Another way to put this is that skew is kept fixed at strikes as the
spot is shifted. This means the volatility is independent of the spot, it depends on the
strike only. A sticky strike skew plots volatility against actual strikes. In Table 1.3
we give the February USDZAR skew for options traded on Yield-X. This is the same
skew as that listed in Table 1.1. Intuitively, “sticky strike” is a poor man’s attempt
to preserve the Black-Scholes model. It allows each option an independent existence,
and doesn’t worry about whether the collective options market view of the spot is
consistent.

1.12.3 Which is better: sticky strike or sticky delta?

There is no conclusion yet although market players seem to prefer the sticky strike
model. Rubinstein and Jackwerth in 1997 compared several models and found that
sticky-strike best predicts future smiles [JR 96]. However, Derman found in 1999 that
market conditions should set the tone [De 99].
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Strike 14-Mar-11 13-Jun-11 19-Sep-11 19-Des-11

6.7500 16.5626 13.8135 14.1262 14.1205
6.8000 16.1105 13.8181 14.1295 14.1259
6.8500 15.6748 13.8394 14.1455 14.1409
6.9000 15.2617 13.8770 14.1736 14.1653
6.9500 14.8770 13.9308 14.2133 14.1985
7.0000 14.5270 14.0002 14.2639 14.2403
7.0500 14.2177 14.0850 14.3248 14.2902
7.1000 13.9552 14.1849 14.3954 14.3480
7.1500 13.7455 14.2994 14.4751 14.4131
7.2000 13.5934 14.4282 14.5633 14.4854
7.2500 13.4980 14.5710 14.6593 14.5643
7.3000 13.4574 14.7274 14.7626 14.6495
7.3500 13.4693 14.8968 14.8725 14.7407
7.4000 13.5317 15.0785 14.9885 14.8375
7.4500 13.6424 15.2718 15.1104 14.9395
7.5000 13.7994 15.4761 15.2379 15.0464
7.5500 14.0005 15.6908 15.3709 15.1579
7.6000 14.2436 15.9151 15.5092 15.2739
7.6500 14.5266 16.1483 15.6526 15.3942
7.7000 14.8474 16.3899 15.8009 15.5187
7.7500 15.2040 16.6391 15.9539 15.6471
7.8000 15.5940 16.8954 16.1114 15.7793
7.8500 16.0156 17.1579 16.2733 15.9151
7.9000 16.4664 17.4261 16.4393 16.0544
7.9500 16.9446 17.6993 16.6094 16.1969
8.0000 17.4478 17.9769 16.7832 16.3424

Table 1.3: The official sticky strike Yield-X volatility skew for USDZAR during Febru-
ary 2011
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Sticky Delta

He found that if the markets are trending, where the market is undergoing significant
changes in levels without big changes in realized volatility, sticky delta rules [De 99].
Then, in the absence of a change in risk premium or an increased probability of
jumps, the realised volatility will be the dominant input to the estimation of the
implied volatility of (high-Gamma) at-the-money options. As the underlying moves
to new levels, it is sensible to re-mark the current at-the-money implied volatility to
the value of the previous at-the-money volatility. The at-the-money volatility “stick”
to the ATM spot level.

Sticky Strike

Sticky strike rules if the market trades in a range (jumps are unlikely) without a
significant change in the current realised volatility. As markets are range bound most
of the time, sticky strike is the most common rule used.

Daglish, Hull and Suo concluded in 2006 that all versions of the sticky strike
rule are inconsistent with any type of volatility smile or volatility skew [DHS 06].
They state that “If a trader prices options using different implied volatilities and the
volatilities are independent of the asset price, there must be arbitrage opportunities.”
They further found that the relative sticky delta rule can be at least approximately
consistent with the no-arbitrage condition.

1.13 The Binomial Tree

One of the assumptions Black & Scholes made was that the underlying asset is traded
on a continuous basis and that delta hedging is done on a continuous basis — returns
are normally distributed. The discrete version of the normal distribution is the bi-
nomial distribution. In 1976 Cox, Ross and Rubinstein realised this and constructed
a tree based method to value derivatives [CR 85]. Stock returns are assumed to be
governed by a discrete probability measure; in this case the binomial distribution.
The binomial model breaks down the time to expiration into potentially a very large
number of time intervals, or steps. Using probability theory, a tree of stock prices is
produced working forward from the present to expiration. This is graphically shown
in Fig. 1.8. The consequence of this methodology is that, at expiry of an option, we
have a discrete set of possible stock prices. We can now use these prices to value any
derivative security. We are doing what Louis Bachelier stated more than 100 years
ago. In his famous dissertation he mentioned that “you have to ‘model’ spot price
movements’ before you ‘model’ option values [We 06]. He realised that the unknown
spot price in the future is just a scaled version of the current spot price.

We start by making a very restrictive assumption. Let’s start with a stock price
S and we assume that after a small time interval ∆t the price can take two values
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Figure 1.8: The binomial distribution is the discrete version of the normal distribu-
tion.

only: it can either move up to a new price of uS or down to dS (where u and d are
numbers such that u > d). We also assume that the transition probability of moving
to uS is p and to dS, (1 − p). Further, after another small time interval ∆t all these
prices can only take two values each. This leads to a tree of prices as shown in Fig.
1.9.

The probabilities are given by

p =
a − d

u − d

u =
1

2a

[

a2 + b2 + 1 +
√

(a2 + b2 + 1)2 − 4a2
]

≃ eσ
√

∆t (1.42)

d =
1

u

where

a = e(rd−rf )∆t. (1.43)

b2 = a2(eσ2∆t − 1).
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Figure 1.9: Five step tree [Ha 07].



Chapter 2

Practical Use of Option Models

2.1 Hedging Options

If a trader sells an option to a client, he is faced with problems in managing its risk.
If a similar option trades on an exchange the trader can lay off his risk efficiently.
But, if the option has been tailored to the needs of the client, hedging his exposure
is far more difficult.

A trader who writes an option and who takes the risk onto his book, is given the
ability to trade that risk. It is in the efficient trading of this risk where huge profit
potential lies.

An option’s price depends on six parameters. They are

• the current FX rate;

• the strike price;

• the time to expiration;

• the local riskfree interest rate;

• the foreign riskfree interest rate;

• the volatility.

In each case the relationship is nonlinear and the trader needs to manage these risks.
There are two main approaches (not mutually exclusive) to managing market risk.
One involves quantifying and controlling each of the above risks separately and the
other involves scenario analysis and stress testing. We will describe both approaches
in this section.

Most option traders use sophisticated hedging schemes. As a first step they at-
tempt to make their portfolio immune to small changes in the price of the underlying
asset in the next small interval of time. This is known as delta hedging. Then they

42



CHAPTER 2. PRACTICAL USE OF OPTION MODELS 43

also look at the Gamma and Vega. By keeping Gamma close to zero, a portfolio
can be made relatively insensitive to fairly large changes in the price of the asset; by
keeping Vega close to zero it can be made insensitive to changes in the volatility. In
the next few sections we will describe these approaches in more detail.

2.1.1 The Delta

The Delta is an important parameter in the pricing and hedging of options. But, what
is the Delta? The word delta comes from the fourth letter of the Greek alphabet and
is universally abbreviated as a triangle. The Delta is the amount that an option will
theoretically change in price for a one-point move in the stock. Analytically we define
the Delta as

∆ =
∂V

∂S
= φN(x)e−dτ (2.1)

with V the price of an option defined in Eq. (3.3). From Eq. (2.1) we see the ∆ is
the rate of change of the option’s price with respect to the price of the underlying
stock. We can approximate the Delta with

∆V

∆S
(2.2)

where ∆S is a small change in stock price and ∆V is the corresponding change in
the option’s price1. For example, if an option price was R2.00 and that option had a
Delta of 50 and the underlying stock were to move from R50 to R51 (and everything
else remained constant), the option should move from 2.00 (where it was) to 2.50 -
50% of the stock move of R1.00.

From (2.1) we can now derive the following relationships: if the option is far
out-of-the-money (S ≪ K) we have

∆ ≃ 0.

If the option is deep in-the-money we have

∆ ≃ φ.

∆ is the probability that the option will end in-the-money.
Remember, Deltas are not constant. They change as the stock moves. In Figure

(2.1) we show the variation of the ∆ of a call and put. In Figure (2.2) we show the
typical patterns for the variation of delta with time to expiry for ATM, ITM and
OTM options.

Delta measures the slope of the option’s price curve.

1the ∆ of a stock or future is just 1 or -1.
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Figure 2.1: The Delta of a call.

Figure 2.2: The Delta as a function of the time to expiry.
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Figure 2.3: Delta hedging a put.

Delta as the Hedge Ratio

Black & Scholes showed that the ∆ is a measure of the ratio of option contracts to
the underlying asset in order to establish a neutral hedge - we can now say that Black

& Scholes valued options by setting up a delta-neutral position and arguing that the
return on the position in a short period of time equals the riskfree interest rate.

Stated differently we can say that the ∆ is a measure of how fast an option’s value
changes with respect to changes in the price of the underlying asset and allows you
to equate your options with shares of stock. For example, if you are long a call with
a delta of 37, you can expect the call to move up 37 cents for a one-point move in the
stock. This means that owning one call is equivalent in price movement to owning
37 shares of that stock. This results in the name hedge ratio. This is very helpful
when you consider how many calls or puts to use to hedge a portfolio of stocks or
vice versa.

Delta hedging aims to keep the total wealth of the financial institution as close to
unchanged as possible [Hu 06]. Figure (2.3) shows the total position if we fully hedge
a put option.

If we purchase an option we can trade in the cash instrument (called “trading
spot” or “trading the cash”). By buying the option we pay the premium upfront.
The Delta will then show us that we have to buy the cash at the lows and sell at the
highs - we thus make money by delta hedging. In theory, if we hedge continuously we
should make exactly what we paid for the option. In practise traders do not hedge
continuously and they usually have a view. If they think the option was underpriced
(volatility lower than it actually is) they then hope to realise more profit from trading
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the cash than what they paid for the option.
On the other hand, if we sell the option, we earn the premium. The Delta will

then show us to buy the cash at the highs and sell it at the lows - we thus loose money
by delta hedging. Again, if we sold the option at a higher than actual volatility, we
can hope to loose less money than the premium we received.

The Delta as a Probability

In practise Deltas are quoted like integers but are actually percentages. A 50 delta
means 50 percent — that is, a call with a delta of 50 would be expected to rise (or
fall) one-half point if the FX rate rose (or fell) one point. A call with a delta near 100
(100 percent) could be expected to move almost point-for-point as the underlying FX
rate moves. The same applies to puts, but with one difference: puts have negative
deltas. Thus, a put with a delta of 50 would fall (or rise) 0.50 points if the FX rate
rose (or fell) one point.

Of what use is this information? Delta is used to set up expectations. Imagine
that you are considering purchasing a call on USDKES trading at 82. Should you buy
the 82-strike call or the 86-strike call? The delta is an important piece of information
that may help you with this decision. Let’s assume the 86-strike call is offered in
the market for KSh0.75 and has a delta of 25. Since you expect the rate to rise to
84, with all else being equal, the delta tells you that the option might rise around
KSh0.50 (.25 for each one point move in the FX rate). This may or may not be the
return you were expecting. Using delta, you can compare how much the option is
expected to move for each of the calls in which you are interested.

Using Futures

In practise hedging is often carried out using a position in futures rather than one in
the underlying stock. If you are due to sell an asset in the future, then it is possible
to hedge prices by taking a short futures position (short hedging). If you are due to
buy an asset in the future, then it is possible to hedge prices by taking a long futures
position (long hedging).

When (and only when) the exact contract details can be replicated with futures
contracts does short or long hedging produce a perfect hedge. In most situations it
doesn’t and the futures hedge either needs to be closed out before or after the options
expiry date. This introduces basis risk. Basis risk = spot price of asset to be hedged
- futures price of contract used. If perfectly hedged: basis risk = 0 at expiry (or + or
- otherwise).

Because one uses a future to hedge in the spot market, the delta for the spot
market should be mapped to the equivalent ∆ for a futures contract. The correct
number of futures to be sold or bought are then given by

∆F = e−(r−d)(T ⋆−t)∆ (2.3)
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Figure 2.4: The basis for a currency futures contract.

where T ⋆ is the maturity of the futures contract. This shows that e−(r−d)(T ⋆−t) futures
contracts has the same sensitivity to stock price movements as one stock.

In hedging exchange traded currency futures, we can use the underlying currency
pair and not the future (future contracts illiquid). In doing that we thus need to map
the futures ∆ to the spot ∆. This is done by inverting Eq. (2.3).

In using the future to hedge a spot position one should take the following risks
into account:

Basis Risk If the OTC option expires on a different date than a close-out date
there can be basis risk. The basis is defined as follows:

basis = spot price of asset to be hedged − futures price of contract used.

Figure (2.4) shows the basis for the Mar 02 Alsi futures contract. If the asset to be
hedged and the assets underlying the future contract are the same, the basis should
be zero at expiration of the futures contract (this is called “pull to par”). In general,
basis risk increases as the time difference between the hedge expiration and OTC’s
expiration increases.

There are some sources of basis risk:

• Changes in the convergence of the futures price to the spot price.

• Changes in factors that affect the cost of carry: storage and insurance costs,
opportunity cost.
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• Different natures of mismatched assets.

• Maturity mismatch.

• Liquidity difference.

• Credit risk difference.

• Random Deviation from the Cost-of-Carry Relation.

Due to basis risk, the equivalent hedge given in Eq. (2.3) might not seem perfect.
A trader can get profit and loss swings due to the fact that the spread between the
spot and futures contract changes as the market moves. What one needs to realize
is that the delta for the spot market is actually mapped to the equivalent ∆ for the
forward contract that trades at fair value when 2.3) is used. This is not always the
value where the equivalent future is trading on the exchange. Basket arbitrageurs
are then active in the market. Such a hedge is still perfect though, because, over the
life of the futures contract, due to the “pull to par” effect, the total profit and loss
scenario is equivalent to a hedge with the actual underlying.

Rollover Risk Sometimes, the expiration date of the OTC option is later than the
maturity dates of all the futures contracts that can be used. The hedger must then
roll the hedge forward. Hedges can be rolled forward many times.

When rolling a contract forward, there is uncertainty about the difference between
the futures price for the contract being closed out and the futures price for the new
contract. Hedgers reduce the rollover risks by switching contracts at favourable times.
The hedger hopes that there will be times when the basis between different futures
contracts are favourable for a switch.

2.1.2 Gamma

The Γ is the rate at which an option gains or loses deltas as the underlying asset’s
price move up or down. It is a measure of how fast an option is changing its market
characteristics and is thus a useful indication of the risk associated with a position.
We have

Γ =
∂2V

∂S2
=

N ′(x)e−dτ

Sσ
√

τ
(2.4)

where N ′(x) is the derivative of the cumulative normal distribution function N(x)
defined as

N ′(x) =
1

2
√

π
e−

x2

2 . (2.5)

If Γ is small, ∆ changes slowly and adjustments to keep the portfolio ∆-neutral
need only be made relatively infrequently. If Γ is large, however, changes should be
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Figure 2.5: The gamma of an option.

made frequently because the ∆ is then highly sensitive to changes in the price of the
underlying asset. In Figure (2.5) we show the variation of the Gamma with the stock
price.

Gamma measures the curvature of the option’s price curve. Intuitively gamma
jointly measures how close the current market is to the strike and how close the
option is to expiration. The closer the market is to the strike price and the closer
the maturity of the option is to the expiration date, the higher the gamma. This is
shown in Figure (2.5).

On the date of expiry if the option is very close to ATM, the Gamma is infinite
and the Delta jumps around violently. Consider the situation where you are a few
minutes away from expiry and the spot price jumps from ITM to OTM. The Delta
wil jump from 1 to 0 all the time. What do you do? Pray!

All buyers of options gain from the movements in the price of the underlying
asset. Holders of options are thus “long Gamma” and writers of options are “short
Gamma”. We can also say that “Gamma is a measure of the exposure the position
has to a change in the actual volatility of the underlying market” [To 94].

If one wants to ascertain whether a total position is positive or negative Gamma,
one looks at the profit/loss profile prior to expiry. If the curved relationship to price
of the underlying asset is curved convex2, then the position is Gamma positive and
you make money if the market moves. If the curve turns downward like a frown the
position is Gamma negative and you loose money if the market moves.

The Gamma of a future or spot FX contract is zero.

2Curve turns upwards like a smile.
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2.1.3 Theta

Remember, options lose value as expiry approaches. The Θ is the “time decay factor”
and measures the rate at which an option loses its value as time passes. In practise
we use two Thetas, the theoretical one and an approximate time decay value.

Theoretical Theta

Θ =
∂V

∂τ
= φrKe−rτN(φy) − dSN(φx)e−dτ +

SN ′(x)σe−dτ

2
√

τ
(2.6)

Time Decay

Θtd = V (t + x) − V (t). (2.7)

Here x is a day count parameter. Usually x = 1 meaning that one calculates the
option’s value tomorrow (V (t + 1)) and one subtracts from that the option’s value
for today (V (t)). This give the amount of cash one looses or gains every day. For a
weekend set x = 3.

Theta versus Gamma

We can show that if a portfolio is delta-neutral (∆ = 0) that

Θ +
1

2
σ2S2Γ = rf (2.8)

with f the value of our portfolio. From this we can conclude that the size of the Γ
correlates to the size of the Θ position where a large positive Γ goes hand in hand
with a large negative Θ. A large negative Γ correlates with a large positive Θ. This
means that every option position is a trade-off between market movement and time
decay. Thus if Γ is large, market movement will help the trader but time decay will
hurt him and vice versa.

2.1.4 Rho

The Rho of a portfolio of derivatives is the rate of change of the value of the portfolio
with respect to the interest rate.

ρ =
∂V

∂r
= φKτe−rτN(φy). (2.9)

An increase in interest rates will decrease the value of an option by increasing carry
costs. This effect is, however, outweighed by considerations of volatility, time to
expiration and the price of the underlying asset.
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2.1.5 Vega

The Vega measures the change in the option’s price as volatility changes. In practise
traders uses two Vega measurements: the theoretical Vega and the approximate one.
“At-the-money” options are the most sensitive to volatility changes. If your Vega is
positive and volatility increases, you make money; if volatility decreases, you loose
money.

Theoretical Vega

V =
∂V

∂σ
= S

√
τN ′(x)e−dτ . (2.10)

N ′(x) was defined in Eq. (2.5).

Volatility Decay

As with the approximate time decay we now say that

V = V (σ ± x) − V (σ). (2.11)

Here x is a percentage parameter. Usually x = 1% meaning that one calculates the
option’s value with the volatility plus 1% and one subtracts from that the option’s
value. This give the amount of cash one gains or looses if volatility increases or
decreases with 1%.

2.1.6 Other Risk Parameters

The following three risk parameters are also used by practitioners [Ha 07]

Speed =
∂3V

∂S3

Charm =
∂2V

∂S∂t

Colour =
∂3V

∂S2∂t

2.2 Hedging in Practise

In practise traders do not rebalance their portfolios continually to maintain delta-
neutrality, gamma-neutrality, vega-neutrality and so on. Problems might be trans-
action costs that make frequent rebalancing very expensive. Liquidity of the hedge
stock also plays a role. Rather than trying to eliminate all risks, option traders there-
fore usually concentrate on assessing risks and deciding whether they are acceptable.
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If the downside risk is acceptable, no adjustment is made; if it is unacceptable, they
take an appropriate position in either the underlying or another derivative.

If liquidity of a specific stock is a problem, traders might look at other similar
stocks which is highly correlated to the original stock. This carries risk but this
risk might be acceptable. For instance, Rand Merchant Bank Holding (RMH) and
Firstrand (FSR) are highly correlated due to RMH’s holding in FSR. Investec SA
and Investec Plc are similarly highly correlated. Currently Harmony (HAR) and
Gold Fields (GFI) are highly correlated due to the gold price. Also, Implats (IMP)
and Amplats (AMS) are also highly correlated.

We have mentioned before that traders can short stock if they can borrow scrip.
This carries a cost and sometimes scrip is just not available which can make hedging
problematic.

Traders also carry out scenario analysis. This involves calculating the gain/loss
on their portfolio over a specified period under a variety of different scenarios. This
is done by choosing a time period like one day, one week or one month. Then one
chooses say two variables upon which the portfolio depends like volatility and interest
rates. One then calculates a matrix of profit/loss experienced under these different
scenarios.

Traders also stress test their portfolios. This involves testing the effect on a
portfolio of extreme movements in the underlying variables. One would for instance
test the potential losses if there is a market crash of say 20%. This would not just
mean that the prices would fall by 20% but the volatility would increase as well.

2.3 More Realistic Greeks

Black & Scholes assumed that the underlying market is continuous, that is, the stock
price moves continuously as time progresses. The delta calculated in Eq. (2.1) and
the trading thereof as described above, thus assumes that a trader can and should
re-balance his hedge continuously as time progresses. In practise this is not possible
and traders need risk parameters that reflect the real dynamics of the market more
closely.

2.3.1 Impact Delta

We have stated before that Delta hedging aims to keep the total wealth of the financial
institution as close to unchanged as possible. So, is this achievable in practise? Can
we calculate a Delta that will keep a trader’s P/L constant over a range of FX rates
AND where we keep the volatility skew in mind? The answer is yes. Another point
to keep in mind is that the ordinary Black & Scholes Delta actually only hedges the
cash flow and not the P/L.

We can replicate the theoretical delta and gamma numerically by changing the
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underlying’s price by a small amount and noting the change in the option values. We
then have

∆n =
δV

δS

=
V (S + δS) − V (S)

δS
. (2.12)

This means we obtain the Black-Scholes (BS) value with an underying’s price at
Sand we also determine the BS value if we move the underlying’s price up by a small
amount to S +δS. We call this the “up delta” because we shift the underlying’s price
up. δS is usually chosen to be 0.5% or 1% of the value of S or it can be chosen to
be one i.e., δS = 1. Here, when we obtain the BS values for the different underlying
prices, we keep all the input parameters the same e.g., if the volatility is 30%, we use
30% in calculating V (S) and we use 30% in calculating V (S + δS).

However, moving the underlying in one direction (up), is not necessarily a great
approximation of the behaviour of the function on the way down. A more powerful
tool is to move the underlying’s price down as well. We can then calculate the “down
delta”. The correct numerical delta is then the average of the “up delta” and “down
delta” given by

∆n =
1

2

[

V (S + δS) − V (S)

δS
+

V (S) − V (S − δS)

δS

]

=
1

2δS
[V (S + δS) − V (S − δS)] . (2.13)

From equations (2.12) and (2.13) we deduce that the delta is dependent on the mag-
nitude of the change in the price of the underlying security i.e., δS. The increment is
chosen at the discretion of the trader. It could be a function of either his utility curve
or his estimation of future volatility. The numerical delta as defined in equation (2.13)
has advantages in that it incorporates a little of the second and third derivatives that
should complete the mathematical delta in any form of analysis3

The numerical gamma is defined as the change in the numerical delta for a small
change in the underlying’s price. We thus obtain the “up delta” and the “down delta”
and take the difference between the two – we normalise this by dividing by δS. The
numerical gamma is given by

Γn =
1

δS

[

V (S + δS) − V (S)

δS
− V (S) − V (S − δS)

δS

]

=
1

δS2
[V (S + δS) + V (S − δS) − 2V (S)] . (2.14)

This will be the change in the delta if the market changes by a very small amount.

3N. Taleb, Dynamic Hedging, Wiley (1997)
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We mentioned that using the numerical delta as defined in (2.13) is usually “bet-
ter” than the theoretical BS delta because it takes some of the nonlinear effects of the
BS equation into account. It is also a more appropriate delta because it is unbiased
between up and down market moves.

However, we can refine our estimation of the delta and gamma even further. We
do this by realising that, as markets change, volatilities and dividend yields may
change as well. We cannot incorporate these market realities into the theoretical BS
delta and gamma but we can in the numerical delta and gamma. From (2.13) we
then have

∆I =
1

2δS

[

V (S + δS, σ+, d+) − V (S − δS, σ−, d−)
]

. (2.15)

Here, σ+ is the volatility obtained from the relevant volatility surface when the un-
derlying’s price is S + δS (remember, the moneyness between the strike K and S is
different to the moneyness between K and S + δS hence the volatilities are different
as well). σ− is the skew volatility when the underlying’s price is S − δS.

If we use cash dividends we’ll have d+ = d−. However, if we calculate a dividend
yield from a cash dividend and use the dividend yield in the BS equation, d+ 6= d−

and one will have to obtain the correct yields for the up and down moves. The delta
in equation (2.15) is called the impact or modified delta.

As before, δS is at the discretion of the trader. However, the size of the up and
down move is usually a percentage of the price S. We now define an up move and a
down move as follows

S+ = S (1 + i)

S− = S (1 − i) . (2.16)

i represents a basis point or percentage change in the underlying. i is typically 0.5%,
1%, 1.5%, 2%, 3%, 4% or 5%. This means the trader will calculate his delta for
different size moves reflecting his view on volatility. Equation (2.15) now becomes

∆I =
1

2
Sı

[

V (S+, σ+, d+) − V (S−, σ−, d−)
]

=
V (S+, σ+, d+) − V (S−, σ−, d−)

S+ − S− . (2.17)

We thus calculate the option value at S+ and we also calculate the option value at
S−. This is graphically illustrated in Fig. 2.6

Some VBA pseudo code for calculating the impact delta is given in Fig. 2.7.

2.3.2 Impact Gamma

The impact gamma will give the change in the impact delta if the underlying’s level
changes by the chosen percentage i. To calculate the gamma we now “bump” the
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Figure 2.6: Calculating the Impact Delta

Function Delta_Impact(s, Strike, ValueDate, ExpiryDate, r_d, _

r_f, ATMVOL, phi, i)

‘ This function calculates the impact delta for a given option

‘ ATMVOL = the at-the-money volatility for this option

‘ r_d = domestic the risk-free interest rate

’ r_f = foreign interest rate

’ i = impact points

T = (ExpiryDate -- ValueDate)/365

‘ First, bump the spot price down by the impact points

Sdown = s * (1 - i)

’ sigma = volatility. Find it from volatility surface for the

’ strike and current spot price Sdown

sigma = FindSkewVol(Sdown, Strike, ExpiryDate, ValueDate, ATMVOL, _

r_d, r_f)

‘ Calculate the BS option value using Sdown

VDown = valuation(Sdown, Strike, r_d, r_f, sigma, T, phi)

‘ Phi = 1 for a call and -1 for a put

‘ Secondly, bump the spot price up by the impact points

Sup = s * (1 + i)

’ Find volatility from volatility surface for the strike

’ and current spot price SUp

sigma = FindSkewVol(Sup, Strike, ExpiryDate, ValueDate, _

ATMVOL, r_d, r_f)

VUp = valuation(Sup, Strike, r_d, r_f, sigma, T, phi)

‘ Impact delta is now

Delta_Impact = (VUp - VDown) / (Sup - Sdown)

End Function

Figure 2.7: VBA pseudo-code for calculating Impact Delta.
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underlying’s level up by i and we calculate the impact delta at that level. We then
“bump” the underlying’s level down by i and we again calculate the impact delta.
Similar as before we then have

ΓI =
1

δS

[

∆up
I − ∆down

I

]

=
1

2 S i

[

∆up
I − ∆down

I

]

(2.18)

where we have

∆up
I =

1

S++ − S+−

[

V
(

S++, σ++, d++
)

− V
(

S+−, σ+−, d+−)]

∆down
I =

1

S−+ − S−−

[

V
(

S−+, σ−+, d−+
)

− V
(

S−−, σ−−, d−−)]

. (2.19)

Here we define (using equation (2.16))

S++ = S+(1 + i) = S(1 + i)2

S+− = S+(1 − i) = S(1 + i)(1 − i) = S(1 − i2)

S−+ = S−(1 + i) = S(1 − i)(1 + i) = S(1 − i2)

S−− = S−(1 − i) = S(1 − i)2

and σ++ is the volatility obtained from the volatility surface if the underlying’s price
is at S++ and the same holds for the dividend yield. From (2.19) and (2.20) we now
find that

∆up
I =

1

2S i (1 + i)

[

V
(

S++, σ++, d++
)

− V
(

S+−, σ+−, d+−)]

(2.20)

∆down
I =

1

2S i(1 − i)

[

V
(

S−+, σ−+, d−+
)

− V
(

S−−, σ−−, d−−)]

. (2.21)

We can depict this graphically as shown in Fig. 2.8.
Note the following:

S++ − S+ = S+ − S+− 6= S−+ − S− = S− − S−−.

The impact gamma as defined in (2.18) will give a gamma similar in size to the
theoretical gamma. This means it is normalised to reflect the change in delta for a
very small change in the level of the spot price. We, however, want the gamma if
the spot level changes by i. The correct impact gamma for a spot change of i is then
given by

ΓI =
1

2 S i

[

∆up
I − ∆down

I

]

S i

=
1

2

[

∆up
I − ∆down

I

]

. (2.22)

Some VBA pseudo code for calculating the impact gamma is given in Fig. 2.9.
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Figure 2.8: Calculating the Impact Gamma

Function Gamma_Impact(s, Strike, ValueDate, ExpiryDate, r_d, _

r_f, ATMVOL, phi, i)

‘ This function calculates the impact gamma for a given option

‘ ATMVOL = the at-the-money volatility for this option

‘ r_d = the risk-free interest rate

’ r_f = foreign interest

’ i = impact points

‘ First, bump the spot price down by the impact points

Sdown = s * (1 - i)

DeltaDown = Delta_Impact(Sdown, Strike, ValueDate, ExpiryDate, _

r_d, r_f, ATMVOL, phi, i)

‘ Phi = 1 for a call and -1 for a put

‘ Now bump the spot level up by the impact points

Sup = s * (1 + i)

DeltaUp = Delta_Impact(Sup, Strike, ValueDate, ExpiryDate, _

r_d, r_f, ATMVOL, phi, i)

‘ Impact gamma is now

Gamma_Impact = (DeltaUp - DeltaDown) * 0.5

End Function

Figure 2.9: VBA pseudo-code for calculating Impact Gamma.
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2.4 Formalising Hedging Schemes

Consider a portfolio of derivatives written on some underlying asset with price S
[JT 00]. These derivatives could include forwards, futures, options and the underlying
asset itself. Although we are not restricting the type of instruments, we are assuming
that the derivatives are written on the same underlying.

We know that derivatives depend on certain variables and the value of the portfolio
can be written as

V = V (S, K, σ, t, d). (2.23)

Let us now study how the value of the portfolio changes as time, asset price,
volatility and interest rates changes. From calculus we can use a Taylor’s series
expansion to answer this question:

∆V =
∂V

∂t
∆t +

∂V

∂S
∆S +

∂V

∂σ
∆σ +

∂V

∂r
∆r +

∂V

∂d
∆d +

1

2

∂2V

∂S2
(∆S)2 + · · · (2.24)

Expression (2.24) is a statement about the changes in the value of the portfolio caused
by changes in the underlying variables. Remembering how the Greeks were defined
we have

∆V = Theta × ∆t + Delta × ∆S + V ega × ∆σ + Rho × ∆r + Rhod × ∆d

+
1

2
Gamma × (∆S)2 + · · · (2.25)

2.4.1 Delta Hedging

Let’s assume we have the following portfolio

V (t = 0) = n1c + n2S + B (2.26)

where V (t = 0) is the current value of our portfolio, c represents the value of an
option and we have n1 options. S is the value of the underlying share and we have
n2 shares. Finally, B is an amount invested in a riskless asset. If n1 > 0 it implies
that we have bought the option and if n1 < 0 it implies we have sold the option.

By taking the partial derivative of both sides with respect to S we obtain

∂V

∂S
= n1

∂c

∂S
+ n2 (2.27)

or
Changeinvalueofportfolio = n1Deltac + n2.

If the portfolio needs to be self-financing at date t = 0 we also add

V (t = 0) = 0 = n1c + n2S + B. (2.28)
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Now, using the above-mentioned philosophy, we can make a portfolio insensitive
to small changes in the value of the underlying. In Sec. 2.1.1 we have seen that we
can delta hedge an option. The same principles are used when we are dealing with a
portfolio of derivatives.

To make a portfolio delta-neutral we have to set Eq. (2.27) equal to zero such
that

0 = n1Deltac + n2. (2.29)

Usually, the number of options, n1 is known, Eq. (2.29) can thus be solved for the
optimal number of shares n2. If we further want our portfolio to be self-financing we
also use Eq. (2.28). We then have a system of two equations in two unknowns, n2

and B. This can be solved to obtain the right values.
Let’s look at an example. Assume we are short 1000 options with a value of 2.734

and Delta of 0.562 per option. Also assume the underlying asset’s price is 50. We
then have

0 = −1000 × 2.734 + n2 × 50 + B

0 = −1000 × 0.562 + n2.

This can be solved to give n2 = 562 and B = −25, 726.
The same approach is used when one wants to hedge only the gamma, or only he

vega or only the theta or only the rho. However, these Greeks can only be hedged
with another option and not the underlying. The portfolio should thus be at least

V (t = 0) = n1c1 + n2c2 + B. (2.30)

2.4.2 Delta-Gamma Hedging

If a portfolio is delta-neutral but the Gamma is negative, large changes in the under-
lying will still cause the portfolio to loose money. We now want to make the portfolio
gamma-neutral as well.

If a self-financing portfolio needs to be delta-neutral, we need two assets. If we
add the requirement that the hedged portfolio must also be gamma-neutral, we must
add a third asset to the portfolio. The value of the portfolio is then

V (t = 0) = 0 = n1V1 + n2V2 + n3V3 + n4V4. (2.31)

and for the portfolio to be delta-neutral we have

0 = n1Delta1 + n2Delta2 + n3Delta3 + n4Delta4 (2.32)

and for the portfolio to be gamma-neutral we have

0 = n1Gamma1 + n2Gamma2 + n3Gamma3 + n4Gamma4. (2.33)
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If n1 is known, we have 3 equations in 3 unknowns. This can be solved for n2, n3 and
n4.

Let’s revisit our example from the previous section. We now add another option
with a value of 1.1466 and a delta of 0.2965. We also have the gamma of option one
as 0.0747 and that of option 2 as 0.0529. Eqs. (2.31-2.33) then become

0 = −1000 × 2.734 + n2 × 50 + n3 × 1.1466 + B

0 = −1000 × 0.562 + n2 + n3 × 0.2965

0 = −1000 × 0.0747 + n2 × 0 + n3 × 0.0529.

Solving these equations give n2 = 143.31, n3 = 1, 412.1 and B = −6, 410.75.

2.4.3 Theta Neutral

If our portfolio is delta-neutral, gamma-neutral and self-financing, it is also theta-
neutral. Why? Because we have the identity

Θ =
1

2
σ2S2Γ + rS∆ − rV. (2.34)

For this neutral portfolio we have Theta=Gamma=Delta=V (t = 0)=0 and thus
Theta=0.

2.4.4 Vega Neutral

One can make a portfolio Delta-Gamma-Vega neutral or just Delta-Vega neutral by
implementing the principles described above.

2.5 Imperfections of the Black-Sholes Model

We know that the Black & Scholes model is all but realistic compared to the real
market. However, the model is used by everyone working in derivatives, whether
they are salesmen, traders or quants. It is used confidently in situations for which it
was not designed for, usually successfully. The ideas of delta hedging and risk-neutral
pricing have taken formidable grip on the minds of academics and practitioners alike.
In many ways, especially with regards to commercial success, the Black & Scholes

model is remarkably robust [Wi 98].
Let’s now look at these imperfections and how traders handle these in practise.

2.5.1 Lognormality

Real markets are not described by lognormality very well — this is per se reflected by
the volatility skew. If we look at the lognormal return distribution of the USDZAR
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Figure 2.10: The distribution of USDZAR and EURUSD. The fat tails and skewness
is clearly visible.

or USDKES we see some skewness and kurtosis — fat tails. This is shown in Figure
2.10. This shows there is a higher probability than normal that jumps will occur.
This suggest that we should use another process to describe stock price behaviour.
Many people have proposed different distributions like the parabolic or Levy distri-
butions. These have not really catched on due to the complex pricing formulas these
distributions leads to.

How do traders account for this? They play with the volatility (an accurate market
related skew is imperative), and they look if they can lay off the risk to an exchange
like Safex. To eliminate possible loss scenarios further, we do scenario analysis and
stress testing. Risk management is thus crucial — this implies that a trading desk
needs stable and user friendly risk management software or spreadsheets.

2.5.2 Delta Hedging

Black & Scholes assumed continuous hedging. In practise this is impossible. Traders
calculate the number of FX contracts to buy or sell for a certain market move. Hedging
is then done dynamically at these increments.

Monte Carlo simulation can be employed to calculate deltas discretely in time.

2.5.3 Transaction Costs

Black & Scholes assumed there are no costs in delta hedging. This is not the case.
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We might have to pay brokerage and some taxes. Taxes and brokerage are added to
the option premium.

2.5.4 Volatility

Volatility has to be estimated. Use implied or historical volatility as a base.

2.5.5 Interest Rates

Most options traded are ATM. This translates into a delta of roughly 50%. We can
fix the interest rate for the initial money we borrow or deposit. Then we have the
risk of our dynamic hedging strategy. Like a margining account at an exchange, we’ll
every day either deposit more money or borrow more.

If the yield curve is relatively flat, this should not be a big problem; especially for
short dated options. The risk is, however, if interest rates move violently as they did
during the Asian crises in 1998/99. For long dated options (3 to 5 years) interest rate
risk must be considered. Part of the risk can be hedged by buying a coupon bond
with a similar maturity or fixing the rate by buying a fixed for floating interest rate
swap.

2.5.6 Price Gaps

What happens if there is a crash and liquidity dries up. Also, say the Dollar strength-
ens against the Euro. The Rand or KES can weaken over night and open at very
different levels to the previous day’s close. This is risky. Can use a jump-diffusion
model to calculate more reliable hedge ratios.

2.5.7 Liquidity

Black & Scholes assumed a perfect market with infinite liquidity. What if one cannot
hedge?

2.6 Tricks of the Trade

2.6.1 Data

Reliable data sources are very important. Data should be clean and the dates should
be checked. You must be able to load data smoothly into Excel.
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2.6.2 Risk Holes

Beware of risk holes, concentration of risks — localisation of risk that is difficult to
hedge.

2.6.3 Yield Curve

It is imperative to have an up to date domestic and foreign yield curve at hand when
one prices an option. Deals can be lost due an incorrect interest rates in your pricing.
Also, ensure that you know what type of rate it is that you are inputting into your
model. Imperative is the knowledge of the day count conventions in the different
markets.

2.6.4 Technicals, Economic Information and Company Ana-
lysis

A trader should keep his ear to the ground for any information regarding currencies.
Central bank reports and economic analysis are essential reading.

Every trader should also look at technical analysis and have a basic understanding
thereof. Technical analysis is one of the tools used to obtain information on the
market.

2.6.5 Put-Call Parity

In illiquid markets put-call-parity can help us in creating a synthetic hedge or exposure
that might be beneficial. Look at the following example: let’s assume we are long
stock and we want to buy puts to protect the stock. The puts are however, very
expensive. We then execute the following strategy: sell the stock buy a call (put +
long stock is just a call). If, at expiry the price is above the strike, exercise and buy
stock, if not, do not exercise but buy stock back at lower price.

2.7 Using Volatility

2.7.1 Volatility Spread

The fat is in the spread. When buying and selling options, there is usually a volatility
spread involved. This means that a trader will buy an option from a client at a
different volatility than what he will sell it to a client. Remember to take skew into
consideration as well as at what volatilities the risk might be laid off in the market.

Some players buy market share by selling loss-leaders. This mean they sell options
below the current market value. This is done just to get the deal on their books or
to open potential lucrative lines with a client they never dealt with before.
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2.7.2 Volatility Based Option Strategies

Note that implied volatility and historical volatilities are not good predictors of the
actual realised volatilities. We also mentioned that this creates trading opportunities.
How?

Professional option traders, market makers and institutions trade volatility by
running “delta-hedged” positions. This means they buy or sell options and maintain
a hedge against the option position in the underlying stock. This removes any net
exposure to a small move in the stock. They continuously adjust this hedge as the
market moves.

Because the hedge is in the underlying stock, these traders effectively capture
historical volatility on the hedges while capturing implied volatility on the option
price. That is, if they sell options at a higher implied volatility than the historical
volatility of their hedges, they make money. Similarly, if they buy options at a lower
implied volatility than the historical volatility of the hedges, they make money.

This strategy has a relatively low risk profile, but it involves a significant number
of transactions. It also requires proper portfolio risk management systems.

While this type of delta-hedging volatility trading is difficult to implement and not
very appropriate for the individual investor or non-institutional trader, it illustrates
how volatility analysis can be translated into a practical trading strategy.

2.7.3 Option Volume and Volatility Changes

Option volume and volatility changes can be important indicators. Sudden jumps in
call or put volume, combined with jumps in implied volatility, signal extreme market
activity and possible market bias.

Combining implied volatility changes with technical analysis can be a powerful
tool as well. It is not uncommon to see a rise in put volume and implied volatility
as a stock is hitting technical levels on a rally. This can signal the market is worried
about a downside correction and traders are buying puts as protection.

2.7.4 The Volatility Term Structure

This is plot of the variation of implied volatility with time to expiry of the option. In
theory volatility for long dated contracts should be lower than that for short dated
options. In the South African markets this is not always the case.

2.7.5 Volatility Matrices

Traders set up a matrix of implied volatilities. One dimension is the strike price (or
moneyness) and the other time to expiry. One can then interpolate between the times
and strikes.
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2.7.6 Volatility as an Trading Indicator

One trap traders using volatility analysis tend to fall into is interpreting volatility
itself as a directional indicator. High or low volatility by itself does not imply a
certain direction or expected direction of the stock.

However, careful analysis of volatility patterns, combined with other indicators
and stock movements, can lead to some interesting direction-based trading strategies.
Different stocks behave differently, but in many cases, implied volatility tends to be
a leading indicator of stock direction. This is why the volatility index (see Sec. 7.2.6)
is such an important indicator of possible market moves in the USA.

When a stock is falling, every trader is looking for an indication of whether the
stock will continue in that direction or whether it will stabilize and present a possible
buying opportunity.

When a stock is declining and the implied volatility does not change (or falls), it
suggests the market is not too nervous about the stock. On the other hand, if the
implied volatility rises, it means the market continues to be nervous about the stock’s
downside potential.

2.8 The Skew and its Uses

The volatility skew is determined by the market. The skew spread expresses the
consensual estimate of option traders in the derivatives market, and there must be
some information you can extract from that [Ko 99]. We can thus ask: is the skew a
true reflection of the market? If so, what does that tells us and how can we use the
skew to our benefit? We will now touch on these issues.

2.8.1 Trading the Skew

A volatility skew can be handled as you handle any other asset. If you think an
asset is overpriced, you sell it. If you believe a current option skew is higher than its
average, and you think it should be coming down, then you should be selling that
skew.

One way to execute the strategy is by selling a put bear spread - sell a put with a
low strike price (high volatility) and buy a put with a high strike price (lower volati-
lity). Another is to sell the out-of-the-money volatility through straddles4, although
this would be a speculative bet on the direction of the high-priced option volatility. If
one had a market-directional view based on the option skew, the market index could
be bought or sold short.

4Buy a put and call at the same strike with the same expiry date.
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2.8.2 What about the Future?

Traders, and especially fund managers should also consider the implications of these
skews for the future direction of the market or future profits? If today’s skews are
quite high, can that tell us something about the future expectations of the market?
Yes it can. The skew tells us that option traders are implicitly assuming and pricing
into their options a fear of future market decline.

Incidentally, the skew has historically been extremely wrong. When the S&P 500
was around 400 in 1992, the skew predicted that volatility should be 5% should the
market rally to 1,300 within the next seven years. What happened is that volatility
went to 22% instead. This tells you something about the quality of the prediction
delivered by the market.

2.8.3 Counterintuitive Thinking

Consider the following counterintuitive thinking: when the market skew is quite steep,
the market is quite likely to go up. Why?

Big jumps or big crashes happen as a surprise. When you have an extremely
steep skew, it means that a crash has been discounted already and people are already
paying this risk premium and expecting a crash to happen. And that’s precisely why
it doesn’t happen. Because there is no surprise.

In the past strong moves of the market up or down were concomitant with a low
level of volatility. Whenever volatilities are quite high, the risk premium people are
willing to pay is too expensive, and the market doesn’t move as much as the option
market tells you it will. The implied volatilities are pricing in a risk premium that
is too high. Using the designation “bearish” or “bullish” in this context is entirely
futile.

When the skew is positive and is followed by higher returns, it thus doesn’t nec-
essarily mean that it’s rational to be long. If the skew is positively sloped, it tells
traders that the market is more likely to go down. If it’s negatively sloped, it’s telling
traders that the delivered implied expected returns are going to be small positive
returns, and that there will be plenty of them.

2.8.4 Supply and Demand

The skew is principally a result of the restriction of the supply of some category of
options, rather than some consensus estimate by option traders. Since 1987, equity
option traders have not been able to sell too many lower-strike puts, because the
clearinghouse5 would look at what would happens if there were a repeat of the crash
and prevents them from having a large loss in such a situation. You have a similar
phenomenon in the currencies.

5In the USA.



CHAPTER 2. PRACTICAL USE OF OPTION MODELS 67

You can also infer valuable information about the skew by observing client OTC
deal flows. For example, if institutional or corporate clients are hedging by either
buying puts or executing collars, then the effect on skew will be quickly reflected in
the market and can be dramatic. Similarly, if large retail products are being issued
with capped calls, skew may move considerably as the banks involved in providing
the assets to back these products hedge themselves. So traders need to keep a close
eye on what clients are up to, because it will have quite a significant effect.

Another aspect of supply and demand is the number of players in the skew market
is limited. In the long-term skew there is a big imbalance between what clients want
and what professionals can provide. As a result, we have a huge increase in long-term
skew. There’s no theoretical explanation for it. As long as clients are willing to pay
the level they are paying, and as long as the supply remains limited, the trend will
remain the same.

2.8.5 Other Influences

There are other indirect pressures that influence the skew. Regulatory aspects can,
for instance have an effect. If regulations change that, for instance, forces insurance
companies to up their solvency measures, it can impact on the market. That kind of
size can have an extremely dramatic effect on the skew, and yet tells you absolutely
nothing about investor sentiment — since the hedge has not been put in place because
of a bearish view, but rather to meet regulatory requirements. Skew is heavily influ-
enced by supply and demand factors, more than by academic or technical arguments
or fundamental views on the direction of a market.

2.8.6 The Skew in Other Markets

The skew is quite pronounced in the emerging-market currencies. In the Russian
ruble, the peso and the eastern European currencies, we see pronounced skews over
time. But it takes the shape of a volatility smile, as opposed to the one-sided skew
we’re seeing the equity markets.

Before 1987, there was no significant skew in the equities in USA, but there was
a skew in the bonds. The calls on the bonds were cheap, because people would do
covered writes on the bonds and sell puts. It was common wisdom among market-
makers that if you sold out-of-the-money calls on a bond, you could always buy them
back in a rally, since volatility did not increase. Then in the crash of 1987, when
bonds snapped back up close to 10%, you could not buy them back. Since then,
the skew has become symmetric in the bonds. In fixed-income markets, the skew is
symmetric, but it’s more of a smile then a skew.

Skew appears periodically in markets, depending on the mood of risk managers,
typically after the fact, because they fear a repeat of the events. Usually this should
tell you that these events will not repeat themselves, because, people are prepared
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and these events usually happen when people are not prepared. In U.S. dollar/yen,
the skew fluctuates. The only market that is relatively flat is the euro. Practically
everything else in the financial markets has a skew.

2.9 Buying and Selling Volatility

Options are like a 3D chess game. The three dimensions are price (of the underlying),
time, and volatility [Ya 01]. The most misunderstood and neglected dimension is
volatility. We have mentioned before that option prices are very sensitive to changes
in volatility.

Every options trader needs to understand volatility and appreciate its effects.
When a trader buys an option, he goes long volatility and when he sells an option
he goes short volatility. As we all try to do, traders try to buy options when they
are cheap and sell them when they are dear. The reason it is called volatility based
trading comes from the way we measure cheapness or dearness — volatility. We
have seen before that a high volatility is synonymous with expensive options and low
volatility with cheap options.

There are two ways of judging the cheapness or dearness of options. The first
is simply by comparing current volatility with past levels of volatility on the same
underlying asset. The second is by comparing current traded or implied volatility with
the volatility of the underlying itself. Both approaches are important. Opportunities
arise when options are cheap or dear by both measures.

The volatility trader typically uses puts and calls in combination, selecting the
most appropriate strikes, durations, and quantities, to construct a position that is
said to be delta neutral. A delta neutral position has nearly zero exposure to small
price changes in the underlying. Once a position is set up, it is held, and adjusted at
times when necessary to re-establish the appropriate delta. These adjustments can be
costly, in terms of transaction costs, and should be minimized, but not to the point
where you expose yourself to too much delta risk. A general rule is: “If you give the
market a chance to take money away from you (through delta), it will”.

Once option prices return to a more normal, average level, then the position can
be closed. If not many adjustments were required in the meantime, the trader should
see a profit.

The investor can always count on volatility returning to normal levels after going
to an extreme. This principle is called the mean reversion tendency of volatility, and
it is the foundation of volatility based trading. That volatilities mean revert is a well
established fact and you can see it for yourself just by looking at a few historical
volatility charts. In Fig. (2.9) we plot the historical volatility for USDZAR and
USDKES together with their long term menans. Volatility always comes back to
“normal”. Sometimes it does not happen right away. It may take anywhere from
days to months, but sooner or later it always comes back.
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Figure 2.11: Historical volatilities for USDZAR and USDKES
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2.9.1 Shorting Volatility

When the options of a particular asset are more expensive than usual, sometimes that
additional expense is justified by unusually high volatility in the underlying. While
this may be a decent opportunity to sell options, it is even more advantageous to
sell options when the extra implied volatility is not accompanied by a high historical
volatility. This means there is an anomaly in the market and thus a good trading
opportunity.

Generally, any position in which you are short more options than you are long is
short volatility. One prefers out-the-money options when one shorts volatility because
it gives the underlying some room to wander, and increases the likelihood of realizing
a profit. Generally, the farther out-the-money you go, the lower your returns, but the
greater the probability of achieving those returns. By giving the underlying room to
move, the trader minimizes his chances of having to make costly adjustments.

Longer term options work best, provided they have decent liquidity. Longer term
options have higher Vega, and will therefore respond best when implied volatility
comes down. Longer term options have the additional advantage of having lower
“gamma”. Gamma measures how fast delta changes with price changes in the under-
lying. By using lower gamma options, it takes a bigger price change in the underlying
to imbalance your position.

2.9.2 Buying Volatility

Low volatility situations can be just as lucrative as high volatility situations. We
have mentioned time decay that is against an option buyer but time decay, at best,
is a funny concept. It says that if the underlying asset’s price holds perfectly still,
the option will decay at a certain rate. But what underlying asset price holds still?
None, obviously. In fact, time is what gives the asset its freedom to move!

Let’s assume I have a short volatility position, and let’s say it has a theta of 100.
This means I’m making R100 per day from time decay. Should I feel gratified to see
this? Not really. It is a false gratification because today’s movement in the underlying
could take away R100, or perhaps many times that.

There is nothing wrong with buying options. When an option is fairly valued, by
definition there is no advantage to the buyer nor the seller. If you buy a fairly valued
option, you have not taken on a latent disadvantage in the guise of “time decay”.
Why? Because the underlying is in constant motion.

When buying options, it makes more sense to buy near-the-money, although it
doesn’t have to be a pure straddle (call and put at the same strike). That way a
sharp move in the underlying has a better chance of helping the position. When
that happens, not only does implied volatility normally get a boost, but the move
may drive one of the sides deep in-the-money and give you a gain just from price
movement.
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It is interesting that long volatility positions have a completely different “feel”
than short volatility positions. Short volatility positions often gratify the holder with
steady, almost daily, gains, but can suddenly lose money if the underlying makes a
sharp move. Long volatility positions often seem to dribble away value day by day
for many weeks, and suddenly gain very quickly.

Deciding when to close a long volatility position is usually more difficult, since the
position has blossomed into a larger position with a sharp move in the underlying,
and has probably become imbalanced. Often there is the potential to make (or lose)
more money with each additional day that you hold the position. What can help
you make a decision is to identify whether volatility has returned to normal levels.
If it has, you should consider closing the position. If it has not, you might consider
continuing with an adjusted (re-balanced) position.

When buying volatility, just as when selling volatility, use the longest dated op-
tions you can find that give you decent liquidity. The reason is the same as when
selling: high Vega. The long dated options, with their higher Vega, will respond the
best when implied volatility increases.



Chapter 3

Exchange Traded FX Derivatives

3.1 Advantages of a Futures Market

• Very low trading costs

• Easy to short sell

• Gearing

• It is very easy and inexpensive to buy or sell a future on an index whilst it is
more difficult, and expensive, to transact in a portfolio of shares that spans an
index — and this has to be done all at once.

3.2 Making a Market in Futures/Forwards

Let’s look at the example of making a market in a FX futures. If the trader sells
the future, his resultant position will be short the future. To hedge he should buy
the spot currency — he will borrow money to do this — and he will earn the foreign
interest rate. Buying the spot means there are trading costs to consider. The futures
price is then given by

F = S(e(rd−rf )τ + B) (3.1)

= S(1 + (r′d − r′f )τ + B)

= S

(

(1 + r′′d)
τ

(1 + r′′f )
τ

+ B

)

where B is the brokerage paid in percentage. Quantities denoted with a ′ refer to
simple rates and quantities denoted with a ′′ refer to NACA rates.

72



CHAPTER 3. EXCHANGE TRADED FX DERIVATIVES 73

If there are any other fees we can lump it all together into a parameter l. The
futures price is then given by

F = S(e(rd−l−rf )τ − B) (3.2)

= S(1 + (r′d − r′f − l′)τ − B)

= S

(

(1 + r′′d)
τ

(1 + r′′f )
τ

1

(1 + l′′)τ
− B

)

.

3.3 The Cost of Carry

The relationship between futures prices and spot prices can be summarised in terms
of what is known as the cost of carry. This measures the storage cost plus the interest
that is paid to finance the asset less the income earned on the asset. For an investment
asset like a share we define

c = rd − rf − l. (3.3)

3.4 Currency Futures Dispensation in South Africa

South Africa has a system of exchange control prohibiting certain foreign exchange
transactions. These controls are implemented and overseen by the reserve bank.
Currency futures were launched in 2007 predominately as a retail product. The
initial dispensation granted by the Minister of Finance in 2007 allows individuals
to trade over and above their foreign allocation allowance stipulated by the South
African Reserve Bank. Individuals, in other words, have no limits to the value traded
in the currency futures market.

The Minister of Finance in his 2008 budget speech extended the currency futures
qualifying audience to include all South African corporate entities. Corporate enti-
ties, including limited or unlimited companies, private and public companies, close
corporations, partnerships, trusts, hedge funds and banks are authorised to trade
currency futures with no restrictions on the value traded. Corporate entities do not
need to apply to Reserve Bank for approval to trade the currency futures nor do they
have to report their trades.

Unfortunately, pension funds and long term insurance companies are subject to
their 15% foreign allocation limits while asset managers and registered collective
investment schemes are subject to their 25% foreign allocation limits.

3.5 Justification for a Futures Market

From an economic point of view, the function of a futures market is to allow for
the transfer of risk. These markets have the special function of allowing those who



CHAPTER 3. EXCHANGE TRADED FX DERIVATIVES 74

do not wish to take the risks to nevertheless run their business enterprises. Take a
farmer who has acquired considerable skills in agriculture but is totally put off by
the prospect of volatile prices in the grain market. Futures allow him to exercise his
skills - growing the normal crop risks, which he bears anyway. In short, the futures
markets enable many productive entrepreneurs and businessman to operate without
exposing themselves to risks greater than they are willing to bear. This holds true
for importers and exporters as well. Hedging their currency exposures allows them
to focus on their core businesses and not on the by-products of currency risks which
can have unexpected consequences

The futures market is also valuable to the economy in that it facilitates “price
discovery” and the rapid dissemination of prices. In a traditional forward market
contracts are not standardised and are entered into “over the counter” between buyers
and sellers. The prices at which forward contracts are fixed are not relayed to the
market because they are ”private” deals. Price determination in the overall market
is therefore not as efficient as it could be and buyers and sellers cannot be sure that
they are getting the best possible price. In the futures market, by contrast, the
competitive nature of the market ensures that commodities trade at or very close to
what the market thinks they are worth, and the smallest market user has as much
knowledge as the largest user as to the current value attached to the commodity.

3.6 Futures versus Forwards

A forward contract is one where the buyer and the seller agree on a price, but the
actual transfer of payment for property is deferred until a later time. Forward con-
tracts are arranged between two principals with complete flexibility as to exactly
what property is being transferred and when the transfer will occur.

In contrast, futures contracts are transacted in the arena of a futures exchange.
Transactions must be made in prescribed increments (i.e., whole numbers of futures
contracts covering a designated “size” per contract), where the price-setting capability
applies to a limited number of prospective settlement dates [Ko 02]. Transactions take
place at the best bids and offers provided by the exchange members who trade through
an electronic trading system. Using internet trading systems, clients of exchange
members, trade directly onto the exchange via the exchange’s “direct market access”
(DMA) platform.

Cash flow obligations are very different for forward contracts and futures contracts.
With a forward contract, a price is established on the trade date; but cash changes
hands only on the value (or settlement) date, when, as agreed, the buyer pays the
seller and takes possession of the property. With a futures contract, the change in
value of the futures is passed between the two parties to the trade following movements
of the futures price each day, making use of the clearinghouse1 as an intermediary.

1Clearing houses in all countries use a common set of safeguards to limit the likelihood of defaults
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When the futures price rises, the buyer (who holds the long position) “earns”
the change in value of the contract, and the seller (the short-position holder) loses.
Opposite adjustments are made when the futures price declines. This daily cash
adjustment thus collects from the loser and pays to the winner each day, with no
extension of credit whatsoever. The daily Rand value that changes hands is called
the “variation margin.”

This cash-flow aspect of the futures contact is perhaps the most difficult conceptual
hurdle, as well as the hardest operational feature, for a potential futures market user.
Maintaining a futures position requires that the position taker, both the buyer and
the seller, be ready and able to pay funds into the clearinghouse (via a broker) each
day that the futures position generates losses.

Alternatively, efficient participation in the futures market requires that the trader
or hedger be ready and able to employ funds that may be generated from profitable
futures positions. Naturally, the former situation is the one that would cause poten-
tial problems. Due to the high leverage nature of the futures contract, the cash-flow
requirements of a losing futures position may be quite onerous. The futures partic-
ipant must either have the cash readily available or have the prearranged capability
of financing this cash flow requirement. The ”silver lining” to this process is that the
cash requirement fosters a discipline that focuses attention on a market situation as
it is happening-not months after the fact when it is too late to take corrective action.

Parties to forward contracts may require some form of collateral security in the
form of compensating balances or a performance letter of credit. With futures con-
tracts, customers must provide their brokers with initial margin. Initial margin is a
Rand value per contract and is set by the exchange. These amounts are determined
through a statistical analysis and are estimates about what losses are possible in the
future – usually 1 trading day. Participants are required to lodge margins with the
exchange which are sufficient to cover these possible future losses. Should the losses
eventuate and the participant be unable to bear them, the margin is available to the
exchange to meet the shortfall. The Rand value of initial margin requirements vary
depending on the particular futures contract traded; and this amount is adjusted as
volatility conditions change [Ko 05].

Currency futures transactions tend to be used primarily as price-setting mecha-
nisms rather than as a means of transferring property. That is, when using futures
contracts, buyers and sellers typically offset their original positions prior to the de-
livery date specified by the contract, and then they secure the desired currency via a
spot market transaction. This offset of the futures hedge is accomplished simply by
taking a position opposite from the initial trade. For example, if one were to enter
a long futures position, the offset would require selling the futures contracts. Con-
versely, if one started with a short position, offset would be arranged by buying the

by clearing members and to ensure that if defaults do occur, the clearing house has adequate resources
to cover any losses and to meet its own payment obligations without delay.
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contracts. The complete buy/sell (or sell/buy) is referred to as a “round turn” and,
with the completion of a round turn, commissions are charged on a “per contract”
basis.

Please note that, for Rand futures specifically, no physical exchange of currencies
ever takes place even on the expiration date - the contract is cash settled; that is,
following the final trading session (on the third Monday of the expiry month), one
last mark-to-market and cash adjustment takes place.

The size of the commission is negotiated, reflecting the amount of support and
assistance that the broker provides, as well as the volume of trade generated by the
customer. On the forward side, commissions may or may not be charged, depending
on whether the trade is arranged directly with the dealer or if a broker serves as an
agent. Importantly, it is not safe to assume that direct dealing necessarily reduces
transaction costs. Often, the use of a broker-whether a futures broker or an interbank
currency broker - allows customers to access more competitive market prices than
they can otherwise. The factor most likely to determine whether futures or forwards
provide the better prices is the size of the required transaction.

3.7 Economics of Hedging with Currency Futures

The difference between hedging and speculating relates to risk existing before entry
into the futures/forward market. The speculator starts with no risk and then enters
into a transaction that takes on risk in order-one hopes-to make profits. The hedger,
on the other hand, starts with a pre-existing risk generated from the normal course
of his or her traditional business. Futures (forwards) are then used to reduce or
eliminate this pre-existing exposure. These contracts may be used to hedge some
or all of such risk, essentially by fixing the price or exchange rate associated with
the relevant exposure. Once so hedged, the manager is insulated from the effects of
subsequent changes in the exchange rate, either beneficial or adverse.

As of October 2010, 8 different currency futures contracts are listed and actively
traded at the JSE. They are:

• USA Dollar Futures

• British Pound Futures

• Euro Futures

• Australian Dollar Futures

• Japanese Yen Futures

• Swiss Frank Futures

• Canadian Dollar Futures
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• Chinese Yuan Futures

EXHIBIT 1: Perfect Long Futures Hedge
Exposed to the risk of strengthening Rand – weakening US Dollar. The EXPORTER
Size: $10,000
Hedge Instrument: 10 long futures contract

Exchange Rate and Interest Rate Data
Initiation of Hedge Liquidation of Hedge

Transaction Date June 2 2010 Sep 13 2010
Spot Value Date June 4 2010 Sep 15 2010
Futures Delivery Date Sep 15 2010 Sep 15 2010
Spot Price (ZAR/USD) 7.6405 7.1398
Futures Price 7.8313 7.1398

Results

Rands obtained for $10,000 on Sep 15: $10,000 x R7.1398/$ = R71,398.00
Hedge result: $10,000 x (R7.8313/$ -R7.1398/$) = R6,915
Effective exchange rate = (R71,398 + R6,915)/$10,000 = R7.8313/$

Strictly speaking, each futures contract locks in an exchange rate for a specific
value date or delivery date. This result is demonstrated above in Exhibit 1, which
shows the case of the hedger (exporter) who initiates a long hedge of 10 futures
contracts on June 2 to protect against a weakening US Dollar. The size of the
exposure is $10,000 (equal to 10 futures contracts), and the desired value date is
precisely the same as the futures delivery date (Sep 15 2010).

Following a 10% rise in the strength of the Rand, the Rands are purchased at the
new, lower FX rate; ‘but profits on the hedge foster an effective exchange rate equal
to the original futures price’. At the time the hedge is initiated, highest quality bank
customers would likely find the price of the forward contract for the same futures
value date to be virtually identical to the futures contract, so an analogous trade
with a forward contract with the same settlement date in September would foster
the same economic result. Lesser quality (i.e., smaller) customers, however, might
find discriminatory pricing in forward markets, resulting in a slightly disadvantaged
outcome.

Of course, the assumption that the currency requirement coincides with the futures
value date schedule is overly restrictive. A more likely scenario would be one in
which the hedge value date differs from the available futures delivery (value) dates.
In such cases, it may seem that forward contracts have an advantage over futures,
given the flexibility to select a value date that coincides precisely with the exposure
being hedged. This judgment typically turns out to be overstated, however, and
thus this preference may not be justified. Even when using forwards, the date for
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which the currency exchange is expected to take place may need to be altered, so
additional transactions might be required, adding to the cost of the currency hedge.
Also, many users of forwards have to ”bundle” their exposures, thus having individual
forward contract hedges cover the exposures of several planned cash transactions. The
capacity to select a specific value date therefore involves somewhat of a compromise.

EXHIBIT 2: Long Futures Hedge: Early Liquidation, Strengthening Rand
Exposed to the risk of strengthening Rand – weakening US Dollar. The EX-
PORTER.
Size: $10,000
Hedge Instrument: 10 long futures contract

Exchange Rate and Interest Rate Data
Initiation of Hedge Liquidation of Hedge

Transaction Date June 2 2010 Sep 13 2010
Spot Value Date June 4 2010 Aug 31 2010
Futures Delivery Date Sep 15 2010 Sep 15 2010
Spot Price (ZAR/USD) 7.6405 7.3645
Futures Price 7.8313 7.3922

Results

Rands obtained for $10,000 on Aug 31: $10,000 x R7.3645/$ = R73,645.00
Hedge result: $10,000 x (R7.8313/$ -R7.3922/$) = R4,391
Effective exchange rate = (R73,645 + R4,391)/$10,000 = R7.8036/$

When the hedge value date differs from one of the available futures delivery dates,
the hedger simply initiates a futures hedge with the contract that expires as soon as
possible after the desired currency exchange date. The hedge would then simply be
liquidated before expiration.

Mechanically, when the need for the currency is at hand, the hedger would secure
the desired currency using the spot market and simultaneously offset the futures
hedge. An example is shown above in Exhibit 2. Here, as before, the hedge is
initiated on June 2; but now the hedge must take possession of the Rands on 31
August - approximately three weeks prior to the expiration of the September futures
contract. On August 31 the hedger simultaneously sells the required $10,000 with a
spot market trade at a price of R7.3645/$ and offsets the futures hedge at a price
of R7.3922/$. At the time of the hedge liquidation or offset, the difference between
futures and spot prices (the basis) thus equals R0.0277. The consequence of this
non-convergence is that the effective exchange rate realized from hedging the futures
is R7.8036/$ - a difference of 0.0277 from the original futures price.

The outcome shown is predicated on the assumption that the differential between
U.S. interest rates and South African interest rates present in the market on June 2,
when the futures value date was 105 days away, remains in effect on August 31, when
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the futures have 15 days to go before expiration. Relatively higher South African (ver-
sus U.S. interest rates) on August 31 would have fostered a higher effective exchange
rate, and vice versa. Clearly the futures hedge necessarily has some small degree
of uncertainty in terms of the ultimate exchange rate realized; but this incremental
effect can be either beneficial or adverse.

Again, the hedger might have chosen to operate with a forward contract rather
than with the futures. When the need for the currency arises before the futures
value date, however, the relevant forward price would not be the same as the futures
price. Typically, interbank market forward prices are quoted as spot prices plus some
premium (or less some discount), where premiums and discounts are expressed as
”forward swap points,” or ”swap prices.” In this example where the desired currency
exchange is scheduled for September 2, the swap points would likely be roughly pro-
portional to the basis, where the constant of proportionality would reflect the ratio
of time to the desired forward date divided by the time to the futures delivery date.
In this case, that ratio is 90/105. The forward pricing, therefore, could be estimated
as follows2:

Future basis = 7.8313-7.6405=-0.1908 (for 105 days)
Approximate swap price = -0.0050 x (90/105) = -0.1635 (for 90 days)
Approximate forward price = 7.6405 +0.1635 = 7.8040 (for 90 days)
Thus, the hedger should be comparing a forward price of R7.8040/$ for a Septem-

ber 2 settlement with a September futures contract, traded at R7.8313/$ but expected
to realize an effective exchange rate of R7.8036/$ as a consequence of early liquida-
tion. It should be clear, then, that the effective rate realized from a futures hedge
will likely be quite close to the outcome of a forward hedge (i.e., within a few basis
points – 4 basis points in our example) irrespective of whether the timing of the risk
coincides with the futures value date schedule.

For completeness, Exhibit 3 starts with the same problem as that shown in Ex-
hibit 2. In this case, however, we hypothesise that the Rand weakens against the
Dollar. Regardless, comparing Exhibits 2 and 3 shows the same effective exchange
rate whether the Rand appreciates or depreciates. This example thus demonstrates
the robust outcome of a futures hedge. That is, once hedged, the hedger is indifferent
about the prospective direction of exchange rates in the future, as the effective rate
(R7.8036/$ in this case) is unaffected by subsequent spot market moves3.

2Actual forward prices quoted may differ somewhat from this estimate; but the closer the hedge
value date is to the futures value date, the greater the confidence one should have for this approach
to estimation.

3This conclusion requires that the hedge is implemented with no rounding error, and it assumes
consistent basis conditions upon hedge liquidation regardless of the level of spot exchange rates.
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Exhibit 3: Long Futures Hedge: Early Liquidation, Weakening Rand
Exposed to the risk of strengthening US Dollar
Size: $10,000
Hedge Instrument: 1 long futures contract
Exchange Rate and Interest Rate Data

Initiation of Hedge Liquidation of Hedge
Transaction Date June 2 2010 Sep 13 2010
Spot Value Date June 4 2010 Aug 31 2010
Futures Delivery Date Sep 15 2010 Sep 15 2010
Spot Price (ZAR/USD) 7.6405 8.1562
Futures Price 7.8313 8.1839

Results

Rands obtained for $10,000 on Aug 31: $10,000 x R8.1562/$ = R81,562.00
Hedge result: $10,000 x (R7.8313/$ -R8.1839/$) = -R3,526
Effective exchange rate = (R81,562 – R3,526)/$10,000 = R7.8036/$

Note: The general rule for choosing the “correct” futures contract month is to
pick the contract expiration concurrent with or immediately following the desired
date of the actual currency conversion. For example, if you plan to make an actual
conversion on November 1, the closest futures contract expiration following November
1 is available with the December contract.

Liquidity conditions, however, may justify a departure from this practice when
the planning horizon extends beyond the date for which futures contracts are actively
traded. In these cases, hedges temporarily rely on nearby futures positions. After
deferred contracts (i.e., later expirations) develop greater liquidity, the original hedge
contract is offset and a new position is established in the more distant contract month.
This process is called “rolling the hedge.” It necessarily introduces a certain amount
of uncertainty in that the price differentials between successive futures expirations
(i.e., “spread prices”) cannot be known with certainty before the roll.

3.8 Choosing between Futures and Forwards

Choosing between futures contracts and forward contracts for managing currency
exchange rate risk involves consideration of a number of trade-offs. Perhaps most
important is the fact that forwards lock in a prospective exchange rate with virtual
certainty. Futures contracts, on the other hand, will foster approximately that same
exchange rate. The source of risk for the futures contract pertains to the uncertainty
associated with the size of the basis at the time the futures hedge needs to be liqui-
dated. Depending on prevailing interest rate differentials in the market at that time,
this uncertainty may prove to be beneficial or adverse.

Beyond this consideration, a further issue deals with hedge management prac-
tices. Forwards tend to be maintained consistently until the value date arrives when
currencies are then exchanged even when the forwards are generating losses. The
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mark-to-market aspect of futures and the required daily cash settlements tend to fos-
ter a re-examination of the desirability of hedging when hedges generate losses, thus
allowing for the curtailment of these losses. Put another way, futures provide greater
flexibility in that they are more easily offset than forwards if the need for hedging is
obviated. And finally, futures have the ancillary benefit that they do not introduce
any added credit risk for the hedger as a consequence of the rigorously practiced
marking-to-market requirement, while forwards do.

3.9 The Role of the Stock Exchange

3.9.1 A Brief History

Some stories suggest that the origins of the term “bourse” come from the latin bursa
meaning a bag because, in 13th century Bruges, the sign of a purse (or perhaps three
purses), hung on the front of the house where merchants met4.

However, it is more likely that in the late 13th century commodity traders in
Bruges gathered inside the house of a man called Van der Burse, and in 1309 they
institutionalized this until now informal meeting and became the “Bruges Bourse”.
The idea spread quickly around Flanders and neighbouring counties and “Bourses”
soon opened in Ghent and Amsterdam.

The Dutch later started joint stock companies, which let shareholders invest in
business ventures and get a share of their profits - or losses. In 1602, the Dutch East
India Company issued the first shares on the Amsterdam Stock Exchange. It was the
first company to issue stocks and bonds.

3.9.2 What is a Stock Exchange

A stock exchange, share market or bourse is a corporation or mutual organization
which provides facilities for stock brokers and traders, to trade company stocks and
other securities. Stock exchanges also provide facilities for the issue and redemption
of securities, as well as, other financial instruments and capital events including the
payment of income and dividends. The securities traded on a stock exchange include:
shares issued by companies, unit trusts and other pooled investment products, bonds
and derivative instruments like futures and options.

To be able to trade a security on a certain stock exchange, it has to be listed there.
Usually there is a local & central location at least for recordkeeping, but trade is less
and less linked to such a physical place, as modern markets are electronic networks,
which gives them advantages of speed and cost of transactions. Trade on an exchange
is by members only.

Advantages of bourses

4See http://en.wikipedia.org/wiki/Stock exchange
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• Raising capital for businesses

• Mobilizing savings for investment

• Enlarges the investment horizon

• Higher liquidity will lead to more efficient pricing

• Facilitate company growth

• Redistribution of wealth

• Corporate governance

• Creates investment opportunities for small investors

• Government raises capital for development projects

• Barometer of the economy

3.9.3 Objectives for Using Financial Instruments

The question is always asked: why would an institution trade in a financial instru-
ment? We list a few answers to this question

• outperform the benchmark rate;

• participate in favourable currency / interest rate movements;

• dynamic hedging;

• effective use of credit lines;

• structural change of the underlying asset;

• diversification of investments and cash flows;

• proprietary trading.

3.10 The Role of the Clearing House

The dictionary definition of a clearing house is: “an office where banks exchange
checks and drafts and settle accounts” – in today’s terms, this is the bank’s back
office.

A futures exchange also has a back office. It is, however, still known as a clearing
house. A clearing house is an agency or separate corporation of a futures exchange
responsible for settling trading accounts, clearing trades, confirming trades, collecting
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and maintaining margin monies by calculating gains and losses, regulating delivery
and reporting trading data

Some clearinghouses interpose between buyers and sellers as a legal counter party,
i.e., the clearinghouse becomes the principal buyer to every seller and vice versa. This
obviates the need for ascertaining credit-worthiness of each counter party and the only
credit risk that the participants face is the risk of clearing house committing a default.
This actually means the following: if SBSA makes a price in a currency future, and
a client trades on that price, the client trades with the exchange (clearinghouse) and
the clearing house trades with SBSA. The clearing house will thus buy the future
from SBSA and on sell it to the client. The advantage of such a structure is that
every trade is guaranteed – there is virtually no credit risk. This process is referred
to as novation, whereby the clearing house guarantees the performance on each trade.

The clearinghouse puts in place a sound risk-management system to be able to
discharge its role as a counter party to all participants. In South Africa, the per-
formance of the contracts registered by the exchange is guaranteed by the clearing
house SAFCOM. The exchange also maintains its own fidelity fund5 and insurance
which can be used in case of a default. The exchange also puts in place membership
criteria and some of the new exchanges have also prescribed certain minimum capital
adequacy norms.

What happens in practise? Each trade concluded is matched daily by YieldX i.e.
the exchange ensures that there is a buyer and a seller to each contract. YieldX’s clear-
ing house (SAFCOM6) then becomes the counterparty to each trade once each trans-
action has been matched and confirmed. To protect itself against non-performance,
SAFCOM employs a process known as margining.

3.11 Member Brokers

The rules of most exchanges state that any person who wishes to trade on an exchange
needs to be either an exchange member or a client of a member. An exchange usually
has strict membership criteria and membership is limited. Members must also, at all
times, comply with the rules of the exchange. The rules sometimes prescribe capital
adequacy requirements and necessary administrative systems. Such rules are set up
as an additional risk measure to ensure that all business activities on the exchange
are done with the highest integrity.

Exchanges have members because they cannot handle the administrative burden of
individual clients who trade through the exchange – this is the task of the members.
The broker acts on behalf of the investor. Every investor must have an account
with a broker if he wishes to trade through the exchange. With internet trading,
some brokers become administrative agents only. Clients trade “directly” through

5The rules of the JSE Fidelity Fund were approved by the Financial Services Board (FSB)
6SAFCOM is a separate legal entity to the exchange itself.
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the exchange with the supplied software and internet. However, the rules are clear:
the broker is still liable for his clients’ position if disaster might strike.

There are usually different classes of membership. Private clients will usually
trade through a broking member. A broking member may trade for and on behalf
of clients and enter into client agreements with clients. Members with clients must
administer all aspects of all their clients e.g., their FICA requirements and margin
accounts.

The exchange can be seen as the factory of goods. The members are the wholesale
agents who distribute the factory’s products to the retail market. Such a structure en-
ables the exchange to concentrate on being an exchange: listing investment products
and ensuring that trade happens orderly.

3.12 Margining

Margining is a risk management procedure. Risk management may be defined as
identifying the risk of loss in a portfolio and ensuring that the losses can be borne.

This mechanism of margining is two-fold: marking-to-market and margining.
Marking-to-market ensures that all losses up to the present are absorbed. Partic-
ipants with losses are required to make cash payments to the exchange equal to their
losses. Margining then estimates what losses are possible in the future. Participants
are required to lodge margins with the exchange which are sufficient to cover these
possible future losses. Should the losses eventuate and the participant be unable to
bear them, the margin is available to the exchange to meet the shortfall.

Practically this means: Firstly, when a position is opened (either long or short),
the investor is called on to pay an initial margin in cash to the clearing house. This
cash is deposited into what is termed a margin account. This amount remains on
deposit as long as the investor has an open position. It attracts a market related
interest rate (RODI less 25 basis points), which is refunded to the investor once the
position is closed out, or the contract expires. The RODI index is calculated by
reference to an average of the overnight call deposit rates paid by the banks where
SAFEX deposits margin. It is important to remember that this margin is purely a
deposit with the clearinghouse.

Secondly, the Exchange re-values each position against the market price at the
close of trade daily. This process is referred to as Marking-to-Market (MTM) with the
market price being termed as the MTM price. Any difference from the previous day’s
market price is either paid to the investor, or paid by the investor to the clearinghouse
(all flows go through the member), in cash - the profit or loss is thus realised on a
daily basis. This is possible, because the clearinghouse is the central counterparty to
all contracts, and the number of long contracts equals the number of short contracts.
This payment is called variation margin (also maintenance margin).

The MTM levels are distributed at the end of trading by the exchange. This is
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either done by email or the levels can be downloaded from their website. The trading
system also has a report with all the levels.

All trades done on the JSE is reported through the BDA system. This is a flat
file that is distributed to members at around 5:30 each day. This report holds all
relevant information: all trades for each client and margin movements. The exchange
usually sends a margin report to each member stating the total margin either due to
a member or that has to be paid by the member. This will be the total margin taking
all of that member’s clients into account. If the member receives a margin call, he
has till 12:00 the next day to pay. The member must then ensure that he receives the
appropriate margins from all of his clients.

If the balance in the margin account falls below the initial margin level, the client
receives a margin call from his member broker and he is requested to top up the
margin account to the total initial margin level. If the client fails to do so, the broker
has the right to liquidate any position up to a point where the margin account is
above the initial margin level. Any balance above the initial margin level can be
withdrawn by the investor.

3.13 Spread Margining

YieldX’s initial margin requirement is determined by spread margining which is sim-
ilar to the Standard Portfolio Analysis of Risk (SPAN) method. Many different
variations of this method are used by derivatives exchanges world-wide. SPAN is a
risk-based, portfolio-approach, for calculating margin requirements on futures, op-
tions on futures, and other derivative and non-derivative instruments. Contracts are
grouped into classes of similar underlying instruments but expiry dates can also be
factor. These classes are examined over a range of price and volatility changes to
determine the potential gains and losses.

The basis of Span is that the whole of the portfolio on the exchange is valued
(“scanned”) at a number of points over a wide range of market moves. The range is
selected to cover almost all conceivable market moves within the next day. The lowest
of the portfolio values is identified and from this is found the greatest loss which the
participant could suffer on the next day. The initial margin, due in cash the next
morning, is then set equal to this greatest loss.

Statistically YieldX determines the possible loss in one day with a confidence level
of 99.5% - this means only 0.5% of daily losses is further than 3.5 standard deviations
from the mean or 99.95% of all possible daily changes in the market will be covered
by the IMR. We show this in Fig. 3.13. This is in essence a Value at Risk (VAR)
calculation. The result is an initial margin requirement that will, 99.5% of the time,
cover any loss during a one day period. The precise margin required thus varies
from one exchange-traded product to another. Note, a confidence level of 99.95%
theoretically means there should not be more than one breach per 2000 days.
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Figure 3.1: Lines show 3.5 standard deviations from the mean.

In practise YieldX only adjusts the initial margin monthly but adverse market
movements can result in more frequent adjustments. The margins used by YieldX
during February 2011 is given in Table 3.13. We show the calculation of the IMR in
Fig. 3.13. Of interest to risk managers is the number of breaches per annum shown
at the bottom.

The VSR (volatility scanning range) is used to calculate the margins for options.
Remember, initial margin is required with every new trade — longs and shorts. That
means that if a client buys a December Alsi future and he buys a March Alsi future,
he will have to post margin on both trades.

However, the exchange recognises that some contract have very similar risk pro-
files. Spread margins are used when a client buys or sells a spread e.g., he goes long
a March USDZAR future and sells a June USDZAR future (contracts must be in
the same class of instruments). This is calculated by looking at the interest rate
spread between the dates — YieldX uses the JIBAR rates. The series spread margin
is required when spreads are traded between different classes e.g. a client buys a
March USDZAR future and sells a June EURZAR future. Series spread margins are
calculated by taking the correlations between the different contracts into account.

3.14 Offsetting Margins

The exchange can specify certain contract whose margin requirements can be offset
against one another – the margins are netted off. An example explains: let’s assume
we are long a February futures contract and short a May option contract. If we have
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Table 3.1: Margins for USDZAR and EURZAR futures during February 2011.
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Figure 3.2: Initial margin calculation for the USDZAR and GBPZAR futures con-
tracts during February 2011.
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a loss on the February contract, we might get a margin call. However, if we have a
profit on the option contract, this profit can subsidise the loss and, we might end up
with no margin call at all. Even initial margin can be offset against a profit in our
total portfolio.

The exchange thus takes all open positions of a client into account when calculating
the gross margin requirements.

3.15 Credit Risk

This was mentioned before. The big advantage of trading a futures contract on an
exchange is that the playing field is leveled for everyone. The individual investor can
now trade on a similar footing than a big bank or fund manager. The only credit risk
is that of the clearinghouse because the clearinghouse is counterparty to every trade.

SAFCOM underwrites settlement of all positions of all participants on the ex-
change. This means that it has a resultant exposure to these positions. If settlement
is likely to fail for any reason for spot bonds, the JSE Settlement Authority steps in
and takes the necessary action to ensure that settlement is effected.

A liquidity provider like SBSA should thus not care whether they trade with
me or with another bank like Absa. This makes trading on an exchange especially
advantageous to the small investor. Bid/offer spreads are determined by liquidity
(not credit risk). The small investor is now able to get exactly the same price as
those a bank will offer to a big corporate client. However, initially, when the liquidity
is not high, corporates might feel they will get better prices by doing OTC forwards.

3.15.1 Who Trades Futures?

We have already stated that there are only two types of trades: speculators and
hedgers. Speculators love futures due to the leverage they can get. It is sometimes
also cheaper to trade futures than to trade the underlying — this is the case for the
single stock futures. The single stock futures (SSF) market on Safex is currently the
second biggest SSF market in the world. It is growing rapidly.

However, hedging plays a big role. The hedger starts with a preexisting risk
generated from the normal course of his or her traditional business. Futures (or
forwards) are then used to reduce or eliminate this pre-existing exposure. The white
maize future listed on the agricultural division of Safex is a good example. It is an
extremely liquid contract. A lot of farmers and millers use it to hedge their physical
maize positions. The Alsi future is another example. This contract (and its options)
is used by the bigger banks to hedge OTC derivative structures on their books. Such
structures are done by asset managers and pension funds who want to lay off risk
to the risk takers (usually banks). The banks then lay off their risk to the market
through Safex.
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Yield-X is still in its infancy and the JIBAR futures are only now starting to
take off. Currency futures has attracted many speculators, but it is also a means
for the small investor to hedge his own currency risk. Small importing or exporting
companies might also find a currency future useful. Liquidity in the currency futures
contracts has picked up substantially, especially in the USDZAR contracts. Options
on these futures are picking up nicely.

3.15.2 Risk Measurement

The forward value of an exchange rate is given by

FT = S0
1 + rdTd

1 + rfTf

. (3.4)

To understand the risk associated with a position in a futures contract, we need to
understand what this equation really means and what the holder of a futures contract
exposure is.

If a client buys a future, he buys a contract or agreement. He does not buy the
underlying physical currency; he only gets exposure to that currency. As a matter of
fact, he does not pay anything for that exposure! Remember that the initial margin
is paid back to him when he exits the position. The client thus gets exposure to the
currency for free. Exposure to any security has an element of risk to it. How did the
client obtain exposure “for free?” The equation above holds the true tail.

On the other side of this long position is either another client or a liquidity provider
who assumes a short position. Let’s assume the liquidity provider is a bank and the
client bought 1 USDZAR contract where the spot rate is 7.25 R/$. What the bank
has done is the following

• Lend the client $1000

• Charge the client the Dollar interest rate

• Convert the Dollars into Rand at the spot rate

• Put the R7,250 on deposit at the domestic Rand interest rate.

The equation above has all these elements. If we break the trade down like this
we see that the client is long a deposit in Rand and long a loan in Dollars. His true
risk is at expiry (or when he unwinds) when the opposite will be done and the R7,250
+ interest is converted back into Dollars at the then prevailing spot exchange rate.
If the prevailing spot rate is below the quoted futures rate, he looses money and he
makes money if the prevailing spot rate is above the futures price.

There are thus 3 quantities that underpin the risk: the spot exchange rate, S0,
the Dollar interest, rf and the domestic interest rd. The client has exposure to all
of these but only paid a small initial margin amount. From the liquidity provider’s
perspective: all three risks need to be measured and managed.
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3.15.3 Risk Parameters

The Delta

Let’s first look at the spot exchange rate risk also called the market risk. This is
the risk due to the change in value of the underlying asset. From Equation (3.4) we
deduce there is a direct or linear relationship between the spot price S0 and the value
of the future. The risk parameter to help us in hedging this risk is called the delta.

The delta is the ratio of the change in the value of the futures contract to the
change in the value of the underlying spot FX rate. The Delta is the amount that the
derivative will theoretically change in price for a one-point move in the underlying.
This ratio will give us the number of units of the spot currency to hold or sell in
order to create a riskless hedge. The delta relates the derivative’s price to that of the
underlying asset. This is mathematically given by

∆ =
∆FT

∆S0

≈ ∂FT

∂S0

=
1 + rdTd

1 + rfTf

. (3.5)

This delta is similar to an option’s delta risk measure — the gamma of a future is
zero. Note that the following holds

∆ is







> 1 if rd > rf

= 1 if rd = rf

< 1 if rd < rf

The delta shows us how many of the underlying spot contracts must be bought or
sold in order to hedge the position in the future.

Delta hedging is done continuously because the Delta is not constant — for the
return on the hedge portfolio to remain riskless, the portfolio must continuously be
adjusted as the asset price changes over time.

Rho Risk

Rho risk is risk due to interest rate exposure. From Equation (3.4) we ascertain that
interest rates are a big risk factor in any forward or futures contract. There are,
however, two interest rate risks: risk due to exposure to the domestic interest rate
and risk due to the exposure to foreign interest rates.

The Rho of a portfolio of derivatives is the rate of change of the value of the
portfolio with respect to the interest rate. We now define the mathematical Rho as
follows

ρd =
∆FT

∆rd

≈ ∂FT

∂rd

=
S0Td

1 + rfTf

(3.6)

and

ρf =
∆FT

∆rf

≈ ∂FT

∂rf

=
−S0Tf (1 + rdTd)

(1 + rfTf )
2 (3.7)
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Another way to express the interest rate risk is to define the Present Value of a
Basis Point (the so-called PV01). PV01 measures the change in value of interest rate
sensitive exposures resulting from a 0.01% increase in interest rates. We see this as the
numerical Rho measure. It is defined as follows where we now writeFT = F (rd, rf ),
i.e. Ft is a function of both rd and rf

ρd = F (rd + 0.0001) − F (rd) (3.8)

ρf = F (rf + 0.0001) − F (rf ) (3.9)

If we have a portfolio of contracts we “bump” the yield curve by 1 basis point and
determine the difference between our original value and the new value.

The PV01 shows us how much money we will make or loose if the yield curve
moves up by 1 basis point. This is similar to the “rand per point” measured used in
the bond market.

Theta Risk

Theta is the risk due to time. We see from Equation (3.4) that FT is also a function of
time. This is called time value. The time value for an option is extremely important;
it is less important for a future. Let’s define the numerical Theta as follows: it is the
change in the value of the futures contract from one day to the next. We can express
it as follows

Θd = F
(

Td − 1/365

)

− F (Td) (3.10)

Θf = F
(

Tf − 1/α

)

− F (Tf ) (3.11)

where α = 360 for the USD and Euro and α = 365 for the GBP.

3.15.4 Hedging

Convergence of Futures Prices to Spot Prices

As the expiry date of the futures contract approaches, the futures price will eventually
converge to the spot price of the underlying asset7. Two alternative ways of doing
so are presented in Fig. 3.3. The future/forward can be higher than the spot or vice
versa.

On the close-out date, the futures price must be equal to the spot price. If this was
not the case, there would be clear arbitrage opportunities. For instance, if the futures
were above the spot price, one could exploit the following arbitrage opportunity

1. Short a futures

7See http://www.theponytail.net/DOL/DOLnode1.htm
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Figure 3.3: Future and spot convergence.

2. Buy the asset

3. On close-out, sell the asset.

As arbitrageurs exploit this opportunity, the price of the futures will decline and the
price of the underlying asset will rise. This pattern will continue until the futures
and the spot price become equal.

Basis Risk

Basis risk in finance is the risk associated with imperfect hedging using futures. It
could arise because of the difference between the asset whose price is to be hedged and
the asset underlying the derivative, or because of a mismatch between the expiration
date of the future and the actual selling date of the asset.

Under these conditions, the spot price of the asset, and the price of the future
do not converge on the expiration date of the future. The amount by which the two
quantities differ measures the value of the basis risk. That is,

Basis = Spot price of hedged asset - Futures price of contract used

If the asset to be hedged and the assets underlying the future contract are the
same, the basis should be zero at expiration of the futures contract (this is called
“pull to par”). This is shown in Fig. 3.13. Prior to expiration, the basis may be
positive or negative. In general, basis risk increases as the time difference between
the hedge expiration and OTC’s expiration increases.

There are some sources of basis risk



CHAPTER 3. EXCHANGE TRADED FX DERIVATIVES 94

• Changes in the convergence of the futures price to the spot price.

• Changes in factors that affect the cost of carry: storage and insurance costs,
opportunity cost.

• Different natures of mismatched assets.

• Maturity mismatch.

• Liquidity difference.

• Credit risk difference.

• Random Deviation from the Cost-of-Carry Relation.

Due to basis risk, the equivalent hedge given in Eq. (3.5) might not be optimal.
A trader can get profit and loss swings due to the fact that the spread between the
spot and futures contract changes as the market moves. We can define a “better”
hedge ratio as follows

h = ∆ ρ
σS

σF

=
1 + rdTd

1 + rfTf

ρ
σS

σF

. (3.12)

In this equation, ρ is the correlation coefficient between the spot price and the futures
price, σS is the volatility of the spot price and σF is the volatility of the futures price.
If we hedge with the underlying to the future, we should have ρ = 1 and σS = σF

giving h = ∆ with ∆ given in (3.5).

Rolling the Hedge

Let’s assume a trader has exposure to an OTC forward. He wants to hedge using
futures. However, the longest future’s expiry date is before the expiry date of the
forward. On the expiry date of the future, the hedger must then roll the hedge forward
– this means he has to open a position in another futures contract to stay hedged.
Hedges can be rolled forward many times.

When rolling a contract forward, there is uncertainty about the difference between
the futures price for the contract being closed out and the futures price for the new
contract. Hedgers reduce the rollover risks by switching contracts at favourable times.
The hedger hopes that there will be times when the basis between different futures
contracts is favourable for a switch. Such switches usually happen the week before
the futures close-out date. This is evident in the Alsi futures contract. Volumes in
Alsi futures traded usually rise during the week or two before a close-out date.
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3.15.5 Arbitrage Opportunities

In the previous section we mentioned that the futures price must converge to the spot
price on expiry. However, before expiry and in a liquid market, the futures price and
the equivalent theoretical forward price might not always be the same.

We might have a situation where

F > S0
1 + rdTd

1 + rfTf

.

We say that the future is trading at a premium to the forward. Such a mismatch can
be turned into riskless profits by buying the underlying asset and selling the future.
Such trades will decrease the difference between the future and forward. The opposite
might also be true where

F < S0
1 + rdTd

1 + rfTf

.

We then say the future trades at a discount. Profits can be made by buying the future
and by selling (or shorting) the underlying asset. On expiry, due to the convergence
of the future and spot prices, both strategies would have made money. However, such
strategies are seldom held till expiry. Traders roll out of them when it is opportune
to do so.

3.16 What is Margin, Novation and Safcom?

From the introduction we deduce that margining is an important part of the risk
management process utilised by an exchange. Let’s define what we mean by “margin”.
To minimize credit and market risk to the exchange, derivative traders must post
margin.

Margin helps derivative exchanges to avoid credit and market risk, i.e., the chance
of one or more counterparties to a trade, defaulting on their obligations. They ac-
complish this in two ways. Firstly, all trades on an exchange are settled or “cleared”
through a clearinghouse which may be a separate legal entity to the exchange itself.
The JSE’s clearing house is SAFCOM. The clearinghouse acts as the principal coun-
terparty to all trades through an exchange. Thus, it interposes itself as the ‘buyer to
every seller’ and the ‘seller to every buyer’ – known as novation. Through novation
Safcom guarantees to its members the financial performance of all contracts traded.
SAFCOM becomes the guarantor of all futures transactions allowing members par-
ticipants to deal freely with each other without counterparty credit risk constraints.
This process is graphically shown in Fig. 3.16. Secondly, exchanges employ a system
of margining. Accordingly, a counterparty to a transaction on an exchange is required
to pay a sum over to it at the inception of the derivative transaction to cover any
potential losses arising from a default.

There are 5 different types of margin
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Figure 3.4: The clearing house (Safcom) becomes guarantor to each trade — the
process of novation.

1. Initial Margin: is the amount of money determined by the clearing house on the
basis specified by the risk management committee (RMCO) and held in respect
of the aggregate position of a member or a client – this is paid by both buyers
and sellers. Initial margin shall be paid to, or by, a member or client whenever
the risk of loss changes with respect to the aggregate position (it is also called
a good faith deposit). This margin is reinvested at a competitive rate and at
close out of the positions of the client/member the initial margin is paid back
plus the interest earned for the period. The initial margin may be reduced or
increased based on changes in the margin parameters.

2. Variation Margin: is paid by the members or clients on a daily basis as the
result of the mark-to-market process of the clients’/members’ position. Mark-
to-market refers to the present loss/profits of the position.

3. Additional Margin: clearing members may require additional margin from his
members and members may require additional margin from their clients.

4. Retained Margin: Member may require a client to deposit retained margin with
him which may be used to furnish initial and additional margin requirements.

5. Maintenance Margin: The client may have to top up his account with the mem-
ber with maintenance margin. The client has to pay an amount of money to
restore additional margin when the additional margin has been used to meet
payments of variation margin.
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Figure 3.5: Marking-to-market and variation margin.

3.17 Initial and Variation Margin

Risk management may be defined as identifying the risks of loss in a portfolio and
ensuring that the losses can be borne. In the case of a futures exchange, market risk
management is performed in two steps: marking-to-market and margining.

Marking-to-market ensures that all losses up to the present are absorbed. Partic-
ipants with losses are required to make cash payments to the exchange equal to their
losses – this is called variation margin. Safcom operates under the T+1 method of
“pays and collects”, meaning that all profits/losses (change in value) in all accounts is
received or paid by clearing participants by noon of the business day following the day
the change occurred. This entire process goes a long way to insure market integrity
and is graphically depicted in Fig. 3.17.

The exchange then also estimates what losses are possible in the future — usually
1 trading day. Participants are required to lodge margins with the exchange which are
sufficient to cover these possible future losses – this is called initial margin. Should the
losses eventuate and the participant be unable to bear them, the margin is available
to the exchange to meet the shortfall.

There are two stages to estimating possible future losses and the initial margin
requirements
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• The exchange does a statistical analysis of historical market moves and sub-
jective assessments of the state of the market. They express the maximum
anticipated price and volatility moves between the present and the next mark-
to-market day.

• Secondly, the exchange re-values each position at this maximum anticipated
price and volatility at the next mark-to-market day. The margin covers this
maximum conceivable mark-to-market loss that the position (entire portfolio)
could suffer.

This is called the “Spread Margining” methodology and is in use at most derivative
exchanges across the globe. This methodology is similar to a Value-at-Risk (VAR)
analysis8 [Al 01].

An exchange controls the risk exposure (manages the risk) by changing the margin
requirements. In times of uncertainty or high volatility, margins should be adjusted
higher whilst in quite times it can be adjusted lower. At all times, the exchange will
want to be confident that it has allowed for the sudden unanticipated shocks which
characterise the markets.

3.18 Safex Can-Do Structures

Can-Do’s, the JSE’s latest derivative offering, gives investors the advantages of listed
derivatives with the flexibility of OTC contracts. Can-Do’s allow two counter-parties
to negotiate the terms of a contract, specifically the expiry date and underlying asset.
The expiry date will not be required to be the close-out dates specified for the single
stock futures and index futures and options. Can-Dos will soon also be available on
the currency derivatives and commodity derivatives markets.

Now investors will be able to select any business day as the expiry date of the
contract, which will allow funds to refine and co-ordinate their hedging strategies. In
addition, the reference asset may be a basket of assets, the constituents of which will
be negotiated by the long and short-position holder (previously investors had been
limited to specific stocks and indices). This basket will be valued by the JSE on a
daily basis in accordance with the accepted practice for listed derivatives.

The JSE will then margin each contract holder and in this way nullify any risk
of default. Can-Do’s therefore provide the investment community with a derivative
that is a hybrid of OTC and traditional listed derivatives: a product that is flexible,
transparent and is independently valued.

In Fig. 3.18 we show a screen shot of the current Can-Dos on Yield-X. These
futures have broken expiry dates.

8Value at Risk is defined as the potential market loss in a portfolio over a specified period of time
– usually 1 or 10 days. The analysis is based on volatility and correlation.
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Figure 3.6: Yield-X Can-Dos.

3.18.1 Advantages of Listed Derivatives

Listed derivatives are standardised contracts. This means that the contract is avail-
able to all market participants. Listed derivatives have several advantages over OTC
contracts.

• The exchange acts as the central counter-party to all trades, and any counter-
party risk is off-set using a method known as margining. This means that if
you enter a listed contract, there is virtually no risk of default.

• Listed contracts can be bought and sold. If a party enters a contract and later
decides to exit it, he is able to do so by ‘closing out’ the contract.

• The JSE values all listed contracts on a daily basis and provides a ‘market value’.
This generally gives auditors a great deal of comfort as holders of long and short
positions must value their positions equal and opposite. This gives the market
a third part independent valuation that ensures adherence to accounting law
AC133 whereby certain instruments have to be valued by an independent 3rd
party.

• Can-Do’s provide a great deal of flexibility whereby a client can decide on the
type of product to trade, the underlying of the product, expiry dates and time,
expiry valuation method and the nominal underlying size.

In Fig. 3.18.1 we show a screen shot of the currency futures traded on Yield-X in
South Africa.

3.18.2 Disadvantages of OTC Derivatives

• Prior to entering the contract, the parties must assess each others creditworthi-
ness. This adds an element of cost to the transaction and also implies a certain
amount of risk. Institutions with small balance sheets are often considered to
be too high a credit-risk for the major banks and are therefore excluded from
the market, or receive less favourable pricing than bigger companies.
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Figure 3.7: Trading front-end on Yield-X.

• Parties to a contract are not able to sell their contractual obligation to a third
party. Once a contract has been entered into, the only way that a party can
get out of its obligation is by way of early settlement of the contract (if this is
catered for) or to default.

• The contract is not valued by an independent valuation agent. This means that
each party to the contract may attach its own value to the derivative position.
It is not uncommon for two parties to assign vastly different value to the same
OTC contract - a nightmare for auditors and a practice that has resulted in
several cases of fraud overseas.

3.18.3 Exotic Derivatives

The JSE and SAFEX is the first exchange in the world to list, trade and clear exotic
options. Safex envisaged that the appetite would only be for vanilla exotics. On 8
January 2007 the first exotic was traded; a discrete look-back put spread. Since then
the types of exotics traded grew in leaps and bounds with most of the traded exotics
being complex in nature. Most exotics have the Alsi or JSE/FTSE Top 40 index
as underlying instrument but trades have been done on the DTOP and some single
names as well. To date the following exotics have been listed and traded:

• Fixed and floating strike lookback options
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– put spreads with discrete monitoring

– partial time lookbacks

– including Asian option features

• Barrier Options (Knock-in and Knock-outs)

– discrete and continuous monitoring of barrier

– partial time barrier monitoring

– ladders or timer put spreads or strike resetting options

– double barriers (KIKO options)

• Forward start Options

• Asian Options

• Digital/Binary Options

– cash or nothing and asset or nothing

– including barriers

• Cliquets

Can-Do Exotics are generally structured products where the details are agreed
upon by two counterparties. The counterparties will approach the JSE who will in-
spect all aspects of the deal. These include the adherence to the rules and regulations
of the JSE and the daily valuation and margining of the instrument. If the need ex-
ists, the JSE will develop a pricing model independent from the two counterparties.
The model is parallel tested with the counterparties.

The test phase does not just concentrate on the pricing but also on how interest
rates, dividends and volatilities should be meaningfully incorporated into the model.

Types of models developed thus far include closed form, Monte Carlo and tree
based approaches. A new instrument will only be listed once all parties involved
approve the JSE’s valuation methodology. To date we have not yet come across an
option that we were not able to value. Our motto has always been (subject to the
JSE rules and regulations): “If we can value and clear it, we will list it”.

3.18.4 Exotics: the way Forward

Currently, exotics are only written with equity as the underlying product. However,
in the near future, traders and investors will be able to trade exotic option structures
on a multiple of underlying instruments including interest rate products, currencies
and commodities.
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Equity linked swaps were just introduced in the very near future whereby an in-
vestor/trader will be able to trade one contract with multiple positions. For example,
in the simplest form, a basket could be created with a long position in stock ABC
and a short position in stock XYZ. Offset margins will apply.



Chapter 4

Shariah Compliant Derivatives

There are various prohibitions in Islam regarding banking that must be abided by and
in this regard the Shari’ah prohibits uncertainty (gharar) and gambling (qimar). As a
result, many of the structures that have been created to provide the characteristics of
conventional derivatives while still maintaining Shari’ah compliance are proprietary
and are often not generally openly available. But, ‘there is the concept of ibaha which
means that if something is not banned then it is permitted’. Under this principle,
‘because something appears to be similar to something that is banned, then don’t
assume that it too is banned’.

Looking looking at some of the financial products on the market, it seems that
everything is possible using murabaha. For instance, using ‘murabaha an investor can
“invest” in an “arm’s length Special Purpose Vehicle” (a specially formed company)
that in turn could create “trades” in anything —- from options to futures to warrants.

4.1 Introduction

Risk-Management refers to the process/techniques of reducing the risks faced in an
investment. It generally involves three broad steps

• Identifying the source and type of risk.

• Measuring the extent of the risk.

• Determining the appropriate response (either on Balance Sheet or Off Balance
Sheet) methods.

What makes risk management challenging is the fact that risks and returns are
generally positively correlated. Thus, the risk-return tradeoff. The challenge of
risk-management is to protect the expected returns while simultaneously reducing
or laying-off the risks. Note that all risk management techniques involving deriva-
tives are Off Balance Sheet. What this means is that, the hedging mechanism/method
is “detached” from the underlying transaction.
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The advantage: No need to change the way one does business. No loss of com-
petitiveness, customer convenience etc. An On Balance-Sheet technique is one where
a transaction is structured in such a way as to manage the inherent risk.

Example: Malaysian Exporter; Foreign Customer. On Balance Sheet Technique

• Quote only in Ringgit (domestic currency)

• Increase the foreign currency price equivalent to cover risk (pricing strategy)

• Currency Risk Sharing Agreement.

Off Balance Sheet

• Forwards; Short foreign currency (FC) forward contracts.

• Futures; Short FC futures contracts.

• Options; Long FC Put Options.

• Swaps; FC payer, domestic currency receiver

Off Balance Sheet techniques have become tremendously popular due to

• Cheap and flexible

• No inconvenience to customer

• Can enhance competitiveness.

Despite the popularity of derivatives based off balance sheet techniques, Islamic
Jurists have generally not been in favor.

With help of Bahrain-based International Islamic Financial Market and New York-
based International Swaps and Derivatives Association (ISDA), global standards for
Islamic derivatives were set in 2010. The “Hedging Master Agreement” provides
a structure under which institutions can trade derivatives such as profit-rate and
currency swaps.

4.2 Shari’ah Compliant Derivatives

Shariah Compliant derivative instruments should adhere to the following principles
to be considered halal (acceptable)

• At a primary level all financial instruments and transactions must be free of at
least the following five items

1. riba (usury)
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2. rishwah (corruption)

3. maysir (gambling)

4. gharar (unnecessary risk) and

5. jahl (ignorance).

• Riba can be in different forms and is prohibited in all its forms. For example,
Riba can also occur when one gets a positive return without taking any risk.

• As for gharar, there appears to be no consensus on what gharar means. It
has been taken to mean, unnecessary risk, deception or intentionally induced
uncertainty.

• In the context of financial transactions, gharar could be thought of as looseness
of the underlying contract such that one or both parties are uncertain about
possible outcomes.

• Masyir from a financial instrument viewpoint would be one where the outcome
is purely dependent on chance alone - as in gambling.

• Finally, jahl refers to ignorance. From a financial transaction viewpoint, it
would be unacceptable if one party to the transaction gains because of the
other party’s ignorance.

In addition to the above mentioned requirements for financial instruments, the
Shari’ah has some basic conditions with regards to the sale of an asset (in this case a
real asset as opposed to financial assets). According to the Shari’ah for a sale to be
valid,

1. the commodity or underlying asset must currently exist in its physical sellable
form and

2. the seller should have legal ownership of the asset in its final form.

If something is forbidden by Islamic law, it is called haram.
From all of these conditions and principles, we see that trading of derivatives

would be very difficult if not impossible. But all is not lost because the Shari’ah
provides exceptions to these general principles to enable deferred sale where needed.

4.3 Futures Contracts and Islamic Finance

The futures contract, although standardized and supervised by law, is not permissible
under Shari’ah as it contains elements of both gharar and maisir/qimar. Moreover,
there is no balance between profit and risk sharing between the parties. In respect of
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gharar, the result of the contract is in the future, hence is unknown for the parties at
the time it is entered into. The parties bet on the future result of the contract. The
risk is borne solely by the person who pays the margin, as a financial institution is
secured thanks to the margin and in fact never loses [Pa 09].

Another interesting aspect in case of derivatives is arbitrage. Arbitrage is spec-
ulating on differences in prices of commodities and assets on different markets. The
persons involved in arbitrage called arbitrageurs earn on price differences of the as-
sets. The practice of arbitrage would also be considered haram as the profit is based
on speculating.

Another aspect to consider is leverage. Under Shari’ah, using leverage would be
deemed haram and would invalidate the whole transaction. The leverage transaction
involves payment of interest (loans, facilities). The aim of the transaction is to gain
maximum profit. There are no intentions of the transaction being beneficial to society
or for charitable purposes. Also, the parties to the transaction make a bet on the
prospected profit or loss of the investment.

A number of instruments/contracts exist in Islamic finance that could be con-
sidered a basis for forward/futures contracts within an Islamic framework. We will
examine three such contracts. These are

1. the Salam Contract,

2. the Istisna Contract,

3. Joa’la Contract and

4. Wa’ad Contract.

Each of these contracts concern deferred transactions, and would be applicable for
different situations. The first and probably the most relevant of these to modern day
forward/futures contracts would be the Salam Contract or Ba’i Salam.

4.3.1 Ba’i Salam

Salam is essentially a transaction where two parties agree to carry out a sale/purchase
of an underlying asset at a predetermined future date but at a price determined and
fully paid for today. This is similar to a conventional forward contract however, the
big difference is that in a Salam sale, the buyer pays the entire amount in full at the
time the contract is initiated. The contract also stipulates that the payment must be
in cash form.

The idea behind such a ‘prepayment’ requirement has to do with the fact that
the objective in a Ba’i Salam contract is to help needy farmers and small businesses
with working capital financing. Since there is full prepayment, a Salam sale is clearly
beneficial to the seller. As such, the predetermined price is normally lower than the
prevailing spot price.
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This price behavior is certainly different from that of conventional futures con-
tracts where the futures price is typically higher than the spot price by the amount
of the carrying cost. The lower Salam price compared to spot is the “compensa-
tion” by the seller to the buyer for the privilege given him. Despite allowing Salam
sale, Salam is still an exception within the Islamic financial system which generally
discourages forward sales, particularly of foodstuff. Thus, Ba’i Salam is subject to
several conditions

1. Full payment by buyer at the time of effecting sale.

2. The underlying asset must be standardizable, easily quantifiable and of deter-
minate quality.

3. Cannot be based on an uniquely identified underlying.

4. Quantity, quality, maturity date and place of delivery must be clearly enumer-
ated.

It should be clear that current exchange traded futures would conform to these
conditions with the exception of the first, which requires full advance payment by the
buyer. Given the customized nature of Ba’i Salam, it would more closely resemble
forwards rather than futures. Thus, some of the problems of forwards like “Double-
coincidence”, negotiated price and counterparty risk can exist in the Salam sale.

Counterparty risk however would be one sided. Since the buyer has paid in
full, it is the buyer who faces the seller’s default risk and not both ways as in for-
wards/futures. In order to overcome the potential for default on the part of the seller,
the Shariah allows for the buyer to require security which may be in the form of a
guarantee or mortgage.

4.3.2 The Salam Contract & Islamic Financial Institutions

Since the Salam Contract involves transacting in the underlying asset and financial
institutions may not want to be transacting in the underlying asset, there are a
number of alternatives available. These are in the form of parallel Salam Contracts.
Jurists however are not all in agreement of the permissibility. We have

• Parallel with Seller

– After entering into the original Salam Contract, the bank can get into a
parallel Salam sale to sell the underlying commodity after a time lapse for
the same maturity date.

– The resale price would be higher and considered justifiable since there has
been a time lapse. The difference between the 2 prices would constitute
the bank’s profit. The shorter the time left to maturity, the higher would
be the price.
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– Both transactions should be independent of each other. The original trans-
action should not have been priced with the intention to do a subsequent
parallel Salam.

• Offsetting Transaction with Third Party (Istisna and Joala contracts).

– Here, the bank which had gone into an original Salam Contract enters into
a contract promising to sell the commodity to a third party on the delivery
date.

– Since this is not a Salam Contract the bank does not receive advance
payment.

– It would be a transaction carried out on maturity date based on a prede-
termined price.

Note: This is very much like modern day forward/futures. The difference here being
that the Islamic bank is offsetting an obligation - not speculating.

4.3.3 Istisna and Joala Contracts

In addition to Ba’i Salam, there are two other contracts where a transaction is made
on a “yet to” exist underlying assets. These are the Istisna and Joala contracts. The
Istisna Contract has as its underlying, a product to be manufactured. Essentially, in
an Istisna, a buyer contracts with a manufacturer to manufacture a needed product
to his specifications. The price for the product is agreed upon and fixed. While the
agreement may be cancelled by either party before production begins, it cannot be
cancelled unilaterally once the manufacturer begins production.

Unlike the Salam Contract, the payment here is not made in advance. The time
of delivery too is not fixed. Like Ba’i Salam, a parallel contract is often allowed for
in Istisna.

The Joala Contract is essentially a Istisna but applicable for services as opposed
to a manufactured product.

4.3.4 The Bai’bil-wafa and Bai ’bil Istighlal Contracts

The Bail bil-wafa is a composite of bai (sale) and rahnu (pledge). Under this contract,
one party sells an asset to a buyer who pledges to sell back the asset to the original
owner at a predetermined future date.

The rahnu (pledge) being to sell back to the owner and not to a third party. Looks
like a REPO? Except that the resale price must be the same as the original purchase
price. But like a REPO, the buyer has rights to benefits from ownership of the asset.

The Bai bil-Istighlal is really a combination of the Bai wafa and Ijarah. Under this
contract, the buyer not only promises to resell at a predetermined future price but to
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also lease the asset to the seller in the interim period. The Bai bil-Istighlal can there-
fore be a convenient means by which an investment bank can provide short/medium
term financing. The investment bank first purchases the asset, leases it to the cus-
tomer before finally reselling it to the customer.

4.3.5 Wa’ad

A third common Shari’ah compliant hedging mechanism that has been developed
over the last few years has been based on the concept of wa’ad. The Wa’ad is used in
managing FX risk. Essentially, party A, who is looking for a hedge, will provide an
undertaking (a wa’ad) to purchase a specific currency at a future date. The promise
cannot be conditional on any event, and will have details of the amount of the currency
to be purchased along with the future date of purchase [Hu 09].

4.4 Options in Islamic Finance

From the Islamic banking perspective, options contracts are considered haram and
thus are not permissible under Shari’ah. The reason is that the option contracts
generally trade in possibility, which means that no commodity is actually transferred
between the parties. Both in call and put option contracts, the buyer/the seller intend
to buy/sell the asset, but at the time the contract is entered into, there is no transfer
of commodity. Furthermore, option contracts are entered into for future purposes,
hence the buyer/seller may not execute the contract and in the end, may not sell/buy
the asset. The option contracts trade in possibility of buying or selling asset in the
future.

The whole concept of option contracts is based on bet and chance. If we were to
use Islamic terms, we would say that an option contract is based on riba as interest
is involved in the form of a premium paid by the client. And just this one element
renders the contract haram and a heavy sin by Islam standards.

Furthermore, the contract contains gharar as the result is uncertain and the parties
do not possess the knowledge what the outcome of the option will be. The gharar may
also refer to the lack of sufficient experience and know-how regarding the consequences
of entering into an option contract. One may not earn anything, but might suffer
serious financial losses, one did not expect upon entering into the contract. The
gharar may also cover the unclear and ambiguous provisions of an option contract,
which are not comprehensible to the client. The financial institution can hire a team
of both lawyers and economists to draft such a contract, that its terms and conditions
will be hard to comprehend for the customer. Such occurrence of gharar would also
invalidate the contract [Pa 09].

Recall our earlier argument that to be acceptable an instrument/investment must
be free of gharar and not have zero risk in order to provide some positive return. The
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Istijrar Contract is a recently introduced Islamic financing instrument. The contract
has embedded options that could be triggered if an underlying asset’s price exceeds
certain bounds. The contract is complex in that it constitutes a combination of
options, average prices and Murabaha or cost plus financing.

4.4.1 Overview of Istijar

The Istijrar involves two parties, a buyer which could be a company seeking financing
to purchase the underlying asset and a financial institution. A typical Istijrar trans-
action could be as follows; a company seeking short term working capital to finance
the purchase of a commodity like a needed raw material approaches a bank. The bank
purchases the commodity at the current price (P0), and resells it to the company for
payment to be made at a mutually agreed upon date in the future — for example
in 3 months. The price at which settlement occurs on maturity is contingent on the
underlying asset’s price movement from t0 to t90 = T .

Unlike a Murabaha contract where the settlement price would simply be a prede-
termined price; P (T ) where

P (T ) = P0(1 + r)

with r being the bank’s required return/earning, the price at which the Istijrar is
settled on maturity date could either be P (T ) or an average price P̄ of the commodity
between the period t0 and T .

As to which of the two prices will be used for settlement will depend on how prices
have behaved and which party chooses to “fix” the settlement price. The embedded
option is the right to choose to fix the price at which settlement will occur at anytime
before contract maturity.

At the initiation of the contract both parties agree on the following two items

1. in the predetermined Murabaha price; P (T ) and

2. an upper and lower bound around the P0 (bank’s purchase price at t0).

We show the possible settlement prices in Fig. 4.4.1. In Fig. 4.4.1 we have

P0 = the price the bank pays to purchase the underlying

P ∗ = P (T ) = P0(1 + r) = Murabaha price

PLB = the lower bound price

PUB = the upper bound price

The basic idea behind such a contract is to spread out the benefits of favourable
price movement to both parties, i.e. it is not a zero sum game. Such a contract fulfills
the need to avoid a fixed return on a riskless asset which would be considered “riba”
and also avoids gharar in that both parties know up front what P (T ) is and also the
range of other possible prices (by definition between the upper and lower bounds).
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Figure 4.1: Settlement prices.

Given our description of the Istijrar Contract, the contract comes across as some-
thing that is the result of modern day financial engineering. Many of the products of
financial engineering tend to have the complexities, bounds, trigger points etc. similar
to that of the Istijrar.

4.4.2 Concept of Urban

When analysing the option contract, one cannot ignore urbun, known also as a down-
payment sale. The buyer who intends to buy a certain commodity in the future
pays a certain amount to the seller as a down-payment. If the buyer purchases the
commodity, the down- payment is counted towards the total price for the commodity.
If the buyer decides not to buy the commodity, the down- payment is forfeited and
is treated as a gift from the buyer to the seller. The use of a down-payment sale
(urbun) was declared permissible after long discussions in Shari’ah scholarly circles.
At first glance, the terms and conditions of urbun seem similar to an option contract;
nevertheless, there are serious differences between them.

Firstly, in urbun, the down payment serves as a kind of collateral or guarantee to
the seller that the potential buyer has a serious intention to purchase the commod-
ity. The down payment also serves as compensation to the seller in case the buyer
withdraws from the purchase. Secondly, the down- payment upon purchase of the
commodity is counted towards the total price of the commodity, whereas in an option
contract, premium is paid by the client as consideration for the possibility/entitlement
to purchase underlying for an agreed price on an agreed term in the future. Thirdly,
in urbun, both parties bear the risk of the transaction.

The seller, as he may not sell the item and the buyer as he may forfeit his down-
payment. In an option contract, the client bears always the risk of his unlucky bet;
the financial institution is secured thanks to the premium and in fact never loses.
The premium is paid at the moment the contract is entered into and the financial
institution does not have to worry about the result of the client’s forecast. One of
the principles of Islamic banking is the profit and risk sharing principle. It implies
that any transaction between two parties has to create a healthy balance in sharing
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the risks and the profits. A contract where the burden of risks lays mostly on one
party is not permissible. Fourthly, the purpose of urbun is to secure future purchase
of the commodity, the total price of which is known to the parties. If the contract is
successful, there will be a transfer of commodity which is regarded as the core issue
of any Islamic sale contract. The client does not bet what the future price of the
commodity might be; he knows it at the time the contract is entered into.

Options have generally been examined under the fiqh doctrine of al-khiyarat (con-
tractual stipulations) or under the bai-al-urbun concept. Urbun being a transaction
in which a buyer places an initial good faith deposit.

4.4.3 Arboon

The arboon sale contract, in which a sale contract is affected with a condition of
revocation by the purchaser, works exactly like a call option. The down payment
can be retained by the seller thus working as a fee for the option. We highlight two
features

• the option should be seen as a sale contract for the underlying asset and there
should absolutely not be growth of derivatives beyond actual need of the real
transaction;

• no arboon sale contract is to be entered into unless the seller actually owns the
underlying asset and continues ownership for the whole duration of the option.

4.5 Fuqaha (jurists) Viewpoints on Conventional

Derivative Instruments

4.5.1 Futures

Fatwa of Omam Al-Haramaini Al-Jauwaini

Futures Trading is Halal if the practice is based on Darurah and the Needs or Hajaat
of the Ummah

Syariah Advisory Council (SAC) of Securities Commission

• Futures trading of commodities is approved as long as underlying asset is halal.

• Crude Palm Oil Futures Contracts are approved for trading.

• For Stock Index Futures contract, the concept is approved. However since the
current KLCI SE based stock index future (SIF) has non halal stocks, it is not
approved.
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• Thus is implies that a SIF contract contract of a halal index would be acceptable.

Ustaz Ahmad Allam; Islamic Fiqh Academy

Stock index futures trading is HARAM, since some of the underlying stocks are not
halal. Until and unless the underlying asset or basket of securities in the SIF is all
Halal, SIF trading is not approved.

Mufti Taqi Usmani

Futures transactions not permissible due to

1. According to Syariah, sale or purchase cannot be affected for a future date.

2. In most futures transactions delivery or possession is not intended.

4.5.2 Options

When viewed solely as a promise to buy or sell an asset at a predetermined price
within a stipulated period, Shariah scholars find nothing objectionable with options.
It is in the trading of these promises and the charging of premiums when objections
are raised. The gain in derivatives depends on chance; it is affected by Maisir and
Qimar.

Ahmad Muhayyuddin Hassan

Objects to option trading for 2 reasons

1. Maturity beyond three days as in al-khiyarat is not acceptable.

2. The buyer gets more benefits than the seller - injustice.

Abu Sulayman (1992) (Fiqh Academy - Jeddah)

Acceptable when viewed in the light of bai-al-urbun but considers options to have been
detached and independent of the underlying asset - thereforethey are unacceptable

Mufti Taqi Usmani (Fiqh Academy - Jeddah)

Promises as part of a contract is acceptable in Shariah, however the trading and
charging of a premium for the promise is not acceptable. Yet others have argued
against options by invoking “maisir” or unearned gains. That is, the profits from
options may be unearned.
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Hashim Kamali (1998)

Finds options acceptable because

• Invokes the Hanbali tradition

• Cites Hadiths of Barira (RA) and Habban Ibn Munqidh (RA).

• Also draws parallels with the al-urbun in arguing that premiums are acceptable.

• Also cites that contemporary scholars such as Yusuf al-Qaradawi and Mustafa
al-Zarqa have authenticated al-urbun. (similar stand by Iranian scholars)

Shariah Advisory Council; Securities Commission

Though no formal opinion on stock or Index Options, the SAC has allowed other
option-like instruments

• Warrants

• TSRs

• Call Warrants

Each of these are really option like instruments. Call Warrants for example, are
simply long dated Call Options. Have similar risk/payoff profile.

4.5.3 Conclusion

The overall stance of Fuqaha, of conventional derivative instruments appears to be
one of apprehension even suspicion. That these instruments could easily be used for
speculation appears to be the key reason for objection. The fact that derivatives form
the basis of risk-management appears to have been lost.

Key Problem: Evaluation has always been from a purely juridical viewpoint. And
like most juristic evaluation, have relied on precedence? But there isn’t a precedence
nor equivalence for the kind of risk-management problems faced today.

When extrapolating/inferring: template may be wrong. The object of juridical
analysis appears to be a micro examination of each and every feature of a derivative
instrument to see if it passes, a often subjective religious filter.

The overall intended use of the instrument nor the societal benefits that could
accrue do not seem to have been given due consideration. Aside from individual in-
terpretation, the differing opinions among mazhabs/imams complicates the situation
further. Thus, an options contract may be found objectionable for exactly opposite
reasons.

While some mazhabs like the Hanbalis have been broader in their acceptance, the
Shafi’ and Hanafis have been less so. The Hanbalis for example are somewhat liberal
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when it comes to Option of Stipulation (Khiyar-al-Shart). The Hanbalis hold that
stipulations that remove a hardship, fulfills a legitimate need, provide a benefit or
convenience, or facilitate the smooth flow of commercial transactions are generally
valid as a matter of principle.

4.6 Back to Basics

From the previous section it seems nearly impossible to trade derivatives under Is-
lamic finance. However, we know that as almost anything is permitted in conventional
banking, Islamic banking should be no different, merely a special case. All conven-
tional banking products are built from four pillars: deposits, exchange, forwards and
options. One should be able to built Islamic products using Islamic equivalents to
these four pillars. To achieve this, without getting close to the edge, go back to first
principles, to when derivatives were first created.

Back in the 1970s, US and UK companies made back-to-back loans to hedge foreign
currency exposures — a forerunner of currency swaps. Now, instead of using back-to-
back loans, Islamic products can be created using Islamic equivalents of back-to-back
murabaha, back-to-back ijara, or back-to-back sukuk.

There is a major problem facing IFIs in terms of ‘the lack of tools available for
risk management and risk profile alteration’. The need to address asset liability
management and the yield curve management in IFIs should be met and catered for.

The question that comes to mind is: Should the Islamic finance industry be scur-
rying around trying to replicate each and every complex derivative rather than focus
on what is actually needed? Maybe the way ahead is not to talk about structuring
Islamic derivatives with all of the connotations of gambling and uncertainty; let’s
focus on financial takaful, is a suggestion. Going back to basics and addressing the
problems that derivatives were originally designed to address may be the way for-
ward. Islamic banks would then have Shari’ah-compliant tools that would help solve
the real asset/liability and risk management issues faced by Islamic institutions, both
financial and commercial

4.7 Islamic Business

The evaluation of derivative instruments obvious needs a more coordinated approach;
needs based rather than purely juristic/precedent driven.

But remember, Muslim businesses operate in the same environment and so face
the same risks as any other. Yet, in the current state of affairs, Shariah compli-
ance can impede risk management needs. Unless there is a convergence between
Shariah compliance and risk management needs, Muslim business can be seriously
handicapped.



Chapter 5

The Volatility Surface

5.1 Introduction

The exchange traded index option market in South Africa has seen tremendous growth
during the last couple of years. The biggest liquidity is in options on the near and
middle Alsi future contracts. Alsi futures are listed future contracts on the FTSE/JSE
Top40 index, the most important and tradable equity index in South Africa. OTC
and listed options trade on a skew and most market makers have implemented their
own proprietary skew generators.

In this Chapter we show how to generate the implied volatility surface by fitting
a quadratic deterministic function to implied volatility data from Alsi index options
traded on Safex1. This market is mostly driven by structured spread trades, and
very few at-the-money options ever trade. It is thus difficult to obtain the correct
at-the-money volatilities needed by the exchange for their mark-to-market and risk
management processes. We further investigate the term structure of at-the-money
volatilities and show how the at-the-money implied volatilities can be obtained from
the same deterministic model. This methodology leads to a no-spread arbitrage and
robust market related volatility surface that can be used by option traders and brokers
in pricing structured option trades.

5.2 Stochastic and Nonparametric Volatility Mod-

els

The idea that the price of a financial instrument might be arrived at using a complex
mathematical formula is relatively new. This idea can be traced back to the seminal
paper by Myron Scholes and Fischer Black [BS 73]. We now live in a world where it

1The South African derivatives exchange based in Johannesburg — http://www.safex.co.za/ed/
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is accepted that the value of certain illiquid derivative securities can be arrived at on
the basis of a model (this is the practise of marking-to-model) [Re 06].

In order to implement these models, practitioners paid more and more attention
to, and began to collect, direct empirical market data often at a transactional level.
The availability of this data created new opportunities. The reasonableness of a
model’s assumptions could be assessed and the data guided many practitioners in the
development of new models. Such market data led researchers to models whereby the
dynamics of volatility could be studied and modeled.

Stochastic, empirical, nonparametric and deterministic models have been studied
extensively. In this section we will give a brief overview of the first 3 models before
we delf into the deterministic model in greater detail in §5.3.

5.2.1 Stochastic Models

Black & Scholes defined volatility as the standard deviation because it measures the
variability in the returns of the underlying asset. They determined the historical
volatility and used that as a proxy for the expected or implied volatility in the future.
Since then the study of implied volatility has become a central preoccupation for
both academics and practitioners [Ga 06]. Volatility changes over time and seem to
be driven by a stochastic process. This can be seen in Figure 5.1 where we plot the 3
month rolling volatility for the FTSE/JSE Top40 index. Also evident from this plot
is the mean reversion phenomenon. The 3 month long term mean volatility of this
index is 21.38%.

The stochastic nature of volatility led researchers to model the volatility surface
in a stochastic framework. These models are useful because they explain in a self-
consistent way, why options with different strikes and expirations have different Black

& Scholes implied volatilities. Another feature is that they assume realistic dynamics
for the underlying [Le 00]. The stochastic volatility models that we briefly appraise
are the popular Heston model [He 93] and the well-known SABR model by Hagan et
al. [HK 02].

In the Heston model, volatility is modeled as a long-term mean reverting process.
The Heston model fits the long-term skews well, but fails at the shorter expirations
[Ga 09]. Heston models the volatility surface as a joint dynamic in time and strike
space. A viable alternative to the Heston model is the well known SABR model
[We 05]. Here, volatility is modelled as a short term process by assuming that the
underlying is some normally distributed variable. The SABR model assumes that
strike and time to expiration dynamics are disjoint, i.e. the skews and term structure
of the skews are calibrated separately. This model works better for shorter expirations
but because volatilities do not mean revert in the SABR model, it is only good for
short expirations. Another problem with the SABR model2 is that its parameters are

2The SABR stochastic volatility model has the at-the-money volatility as input, which means
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Figure 5.1: FTSE/JSE Top40 3 month historical volatility during the period, June
1995 through October 2009. The plot shows that volatility is not constant and seems
to be stochastic in nature. Also evident is the phenomenon of mean reversion.

time-homogenous. This means that the model implies that future volatility surfaces
will look like today’s surface. West has shown how to calibrate the SABR model using
South African index option data [We 05]. Bosman et al. also showed how to obtain
a representative South African volatility surface by implementing the SABR model
using Alsi option data [BJM 08]. Issues with the calibration of the SABR model has
been tackled by Tourrucô [To 08] while the original SABR formula has been rectified
by Oblój [Ob 08].

A general problem associated with stochastic volatility models is that they fail to
model the dynamics of the short term volatility skews. This arises from the fact that
the at-the-money volatility term structure can be so intricate in the short-end3 that
these models just fail at accurately modelling the short end volatility dynamics. In
fact, Jim Gatheral states [Ga 06]

“So, sometimes it’s possible to fit the term structure of the at-the-money
volatility with a stochastic volatility model, but it’s never possible to fit
the term structure of the volatility skew for short expirations... a stochas-
tic volatility model with time homogenous parameters cannot fit market

that in an illiquid options market, the SABR generated market surface accuracy will have additional
errors arising from the illiquidity of the at-the-money options trade data.

3Intricate in the sense that the short term volatility skews can include volatility jumps that are
correlated with the equity index level, that are usually not assumed when stochastic volatility models
are derived to model the equity index volatility surface.
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prices!”

The possibility of using an extended stochastic volatility model with correlated
jumps in the index level and volatility might fit the short-term market volatility skews
better, but in practice it is difficult (if not impossible) to calibrate such a complex
model [Ga 09].

The above-mentioned problems associated with stochastic volatility models led us
to look beyond these models.

5.2.2 Empirical Approaches

The empirical approach known as the Vanna-Volga method has been studied exten-
sively. This approach was introduced by Lipton and McGhee [LM 02]. The Vanna-
Volga method is also known as the traders’ rule of thumb. It is an empirical procedure
that can be used to infer an implied-volatility smile from three available quotes for a
given maturity; it is thus useful in illiquid markets. It is based on the construction of
locally replicating portfolios whose associated hedging costs are added to correspond-
ing Black-Scholes prices to produce smile-consistent values. Besides being intuitive
and easy to implement, this procedure has a clear financial interpretation, which
further supports its use in practice [Wy 08].

The Vanna-Volga approach considers an option price as a Black-Scholes price
corrected by hedging costs caused by stochasticity in price-forming factors (volatility,
interest rate, etc.) observed from real markets. While accounting for stochasticity in
volatility, it differs from stochastic volatility frameworks (Heston, SABR, and modern
Levy process-based generalizations) in the following way: rather than constructing
a parallel (possibly correlated) process for the instantaneous volatility and defining
the price as the risk-neutral expectation, the Vanna-Volga approach puts much more
weight on the self-financing argument, considering an option price as a value of the
replicating Black-Scholes portfolio plus additional corrections offsetting stochasticity
in volatility [Sh 08].

This approach is very popular in the foreign exchange market but has been applied
to equities as well.

5.2.3 Nonparametric Estimation of the Skew

In illiquid markets it might not be possible to calibrate models (stochastic or deter-
ministic) due to a lack of data. In such circumstances nonparametric option pricing
techniques might be feasible.

Nonparametric option pricing techniques utilise spot market observed security
prices in order to determine the probability distribution of the underlying asset. Der-
man and Kani [DK 94] and Rubinstein [Ru 94] utilise implied binomial tree (IBT)
approaches to find risk-neutral distributions which result in estimated option prices
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that match observed option prices. These nonparametric approaches impose no as-
sumptions about the nature of the probability distribution of the asset. This leaves
little room for misestimation of option pricing resulting from an incorrect choice of the
probability distribution of the underlying asset. Thus nonparametric methods do not
suffer from the smile bias that is evidenced in parametric models. Using nonparamet-
ric methods to estimate the price of an option and reversing this price through the
Black-Scholes formula will yield the conventional implied volatility. Following this
procedure for a range of possible strikes will result in the so-called nonparametric
volatility skew. The nonparametric volatility skew is free of any model-specific as-
sumptions and, as it is based only on observed asset data, it is a minimally subjective
estimate of the volatility skew [AM 06].

An IBT is a generalization of the Cox, Ross, and Rubinstein binomial tree (CRR)
for option pricing [Hu 06]. IBT techniques, like the CRR technique, build a binomial
tree to describe the evolution of the values of an underlying asset. An IBT differs from
CRR because the probabilities attached to outcomes in the tree are inferred from a
collection of actual option prices, rather than simply deduced from the behavior of
the underlying asset. These option implied risk-neutral probabilities (or alternatively,
the closely related risk-neutral state-contingent claim prices) are then available to be
used to price other options. Arnold, Crack and Schwartz showed how an IBT can be
implemented in Excel [ACS 04].

De Araújo and Maré compared nonparametrically derived volatility skews to mar-
ket observed implied volatility skews in the South African market [AM 06]. Their
method is based only on the price data of the underlying asset and does not require
observed option price data to be calibrated. They characterised the risk-neutral dis-
tribution and density function directly from the FTSE/JSE Top40 index data. Using
Monte Carlo simulation they generated option prices and found the implied volatility
surface by inverting the Black-Scholes equation. This surface was found to closely
resemble the Safex traded implied volatility surface.

5.3 The Deterministic Volatility Approach

Implementing stochastic volatility models and implied binomial trees can be very
difficult. With stochastic volatility, option valuation generally requires a market price
of risk parameter, which is difficult to estimate [DFW 98]. However, if the volatility is
a deterministic function of the asset price and/or time, the estimation becomes a lot
simpler. In this case it remains possible to value options based on the Black-Scholes
partial differential equation although not by means of the Black-Scholes formula itself.
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5.3.1 Deterministic Models

Deterministic volatility functions (DVF) are volatility models requiring no assump-
tions about the dynamics of the underlying index that generated the volatility. These
models can only be implemented if one assumes that the observed prices of options
reflect in an informationally efficient way everything that can be known about the
true process driving volatility — the efficient market hypothesis [Re 06].

Deterministic volatility functions were introduced in the 1990s. During 1993,
Shimko studied the risk neutral densities of option prices and chose a simple parabolic
function as a possible parametric specification for the implied volatility [Sh 93]. Du-
mas et al. studied the applicability of such simple functions. They started by rewrit-
ing the general Black-Scholes differential equation as a forward partial differential
equation (applicable to forward or futures contracts)

1

2
σ2 (F, T ) K2 ∂2C

∂K2
=

∂C

∂t

with the associated initial condition, C(K, 0) ≡ max(S − K, 0). Also, S is the spot
price, F the forward or futures price, K the absolute strike price, T is the time to
expiration and C(K, T ) is the call price. The advantage of the forward equation
approach is that all option series with a common time to expiration can be valued
simultaneously. They further mentioned that σ(K,T ) is an arbitrary function. Due
to this they posit a number of different structural forms (deterministic functions) for
the implied volatility as a function of the strike and time to expiry [DFW 98]

Model 0 : σ = a0

Model 1 : σ(K) = a0 + a1K + a2K
2 (5.1)

Model 2 : σ(K, T ) = a0 + a1K + a2K
2 + a3T + a5KT

Model 3 : σ(K, T ) = a0 + a1K + a2K
2 + a3T + a4T

2 + a5KT

Here, the variables a0 through a5 are determined by fitting the functional forms to
traded option data. Model 0 is the Black- Scholes model with a constant volatility
where Model 1 attempts to capture variation with the asset price. Models 2 and
3 capture additional variation with respect to time. They estimated the volatility
function σ(K, T ) by fitting the functional forms in Eq. (5.1) to observed option prices
at time t (today). They used S&P 500 index option data captured between June 1988
and December 1993. Estimation was done once a week. The parameters and thus
skews were estimated by minimising the sum of squared errors of the observed option
prices from the options’ theoretical deterministic option values given by the functional
forms4. Models 1 through 3 all reflected volatility skews or smirks. They found that
the Root Mean Squared Valuation Error of Model 1 is half of that of the Black-
Scholes constant volatility model. Another important result from their study is that

4They used an algorithm based on the downhill simplex method of Nelder and Mead.
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the functional forms loose their predictive ability rather quickly. This means that
these functional forms need to be refitted to traded data on a regular basis.

Beber followed the Dumas et al. study but used options written on the MIB30 —
the Italian stock market index [Be 01]. He optimised two models

Model 1 : σ = β0 + β1K + ǫ

Model 2 : σ = β0 + β1K + β2K
2 + ǫ (5.2)

One difference between his and the Dumas study is that he defined K as the mon-
eyness and not absolute strike. Model 1 is linear in the moneyness and Model 2
quadratic i.e. iit is a parabola. ǫ is just an error estimate. The simplicity of the two
models is determined by the endeavour to avoid overparametrization in order to gain
better estimates’ stability over time. Beber also decided to give the same weight to
each observation, regardless the moneyness, as the strategy to assign less weight to
the deep out of the money options owing to the higher volatility has not proven to be
satisfactory. He fitted the traded option data by ordinary least squares. Beber found
that the average implied volatility function is fitted rather well by a quadratic model
with a negative coefficient of asymmetry. Hence the average risk neutral probability
density function on the Italian stock market is fat tailed and negatively skewed. The
interpretation of the parameters in general are as follows

• β0 represents a general level of volatility which localizes the implied volatility
function (it is also the constant of regression),

• β1 characterizes the negative profile which is responsible for the asymmetry in
the risk neutral probability density function; it is the coefficient that controls
the displacement of the origin of the parabola with respect to the ATM options,
and

• β2 provides a certain degree of curvature in the implied volatility function or it
controls the wideness of the smile.

One of the most comprehensive studies was done by Tompkins in 2001 [To 01].
He looked at 16 different options markets on financial futures comprising four asset
classes: equities, foreign exchange, bonds and forward rate agreements. He compared
the relative smile patterns or shapes across markets for options with the same time
to expiration. He also used a data set comprising more than 10 years of option prices
spanning 1986 to 1996. The individual equities examined were: S&P500 futures,
FTSE futures, Nikkei Dow futures and DAX futures. He fitted a quadratic volatility
function to the data and found his graphs of the implied volatility to be similar to
that shown by Shimko in 1993 [Sh 93] and Dumas et al [DFW 98]. Tompkins then
states:

“If the sole objective was to fit a curved line, this has been achieved”.
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He concluded that regularities in implied volatility surfaces exist and are similar for
the same asset classes even for different exchanges. A further result is that the shapes
of the implied volatility surfaces are fairly stable over time.

Many studies followed the Dumas and Tompkins papers, most using different
data sets. All of these studied the models listed in Eqs. (5.1) and (5.2). Sehgal and
Vijayakumar studied S&P CNX Nifty index option data [SV 08]. These options trade
on the derivatives segment of the National Stock Exchange of India5. Badshah used
out-the-money options on the FTSE 100 index and found the quadratic model to be
a good fit [Ba 09]. Zhang and Xiang also studied S&P500 index options and found
the quadratic function fits the market implied volatility smirk very well. They used
the trade data on 4 November 2003 for SPX options expiring on 21 November 2003
- thus very short dated options [ZX 05]. They used all out-the-money puts and calls
and fitted the quadratic function by minimising the volume weighted mean squared
error and found the quadratic function to work very well.

Another comprehensive study was done by Panayiotis et al. [PCS 08]. They
tackled the deterministic methodology from a different angle. They considered 52
different functional forms to identify the best DVF estimation approach for modelling
the implied volatility in order to price S&P500 index options. They started with
functions as given by Dumas et al. and listed in Eq. (5.1) where K is the absolute
strike. Next they changed the strike to ln K, S/K (moneyness) and lastly to ln (S/K).
All in all they considered 16 functions similar to Eqs. (5.1). They also considered a
number of asymmetric DVF specifications. Their dataset covered the period January
1998 to August 2004 — 1675 trading days. They recalibrated all 52 functions on a
daily basis. Their main result is that the deterministic specification with strike used
as moneyness (S/K) works best in-sample while the model with strike used as ln K
works best out-of-sample.

Modeling the volatility skew as a deterministic process has other benefits too
[Bu 01]

• They allow one to model volatility separately in expiry time and strike. This
means that each expiry’s skew can be independently calibrated minimising com-
pounding errors across expiries. This property is useful in modeling volatility
surfaces in illiquid markets where data is sparse across strikes.

• Pricing using deterministic volatility preserves spread arbitrage market condi-
tions because no assumptions about the underlying process is made.

• The whole surface can be calibrated with minimal model error.

5The S&P CNX Nifty is an index comprising the 50 largest and most liquid companies in India
with about 60% of the total market capitalisation of the Indian stock market.
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5.3.2 Principle Component Analysis

Using a 3 parameter quadratic function was further motivated by the research findings
due to Carol Alexander [Al 01]. She did a principle component analysis (PCA) on
FTSE 100 index options and found that 90% of the dynamics of the volatility skew
are driven by three factors

• parallel shifts (trends),

• tilts (slopes), and

• curvature (convexity).

Badshah also did a PCA on FTSE 100 options. He used the implied volatility
surfaces for the March and October months for the years 2004, 2005, 2006 and 2007.
His results are in line with that of Alexander although he found that on average 79%
of the dynamics of the skews are driven by the first 3 components — this is similar
to the findings by Alexander [Ba 09]. Le Roux studied options on the S&P500 index
with strikes ranging from 50% to 150% [Le 07]. He found that 75.2% of the variation
of the implied volatility surface can be described by the first principle component
and another 15.6% by the second! His first component reflects the slope or tilt of
the skew. The difference between his study and that of Alexander’s is that he used
moneyness instead of absolute strikes.

Bonney, Shannon and Uys followed Alexander’s methodology and studied the
principle components of the JSE/FTSE Top 40 index [BSU 08]. They found that the
trend affect explains 42% of the variability in the skew changes, the slope 19% and
the convexity an additional 14%. Their results show that the first three components
explain 76.24% of the variability in skew changes. They attribute the difference
between Alexander’s 90% and their 76% to differences between a liquid market and
less liquid emerging market.

5.3.3 The SVI Model

Another interesting research finding was presented by Jim Gatheral [Ga 04]. He de-
rived the Stochastic Volatility Inspired (SVI) model. This is a 5 parameter quadratic
model (in moneyness) based on the fact that many conventional parameterisations of
the volatility surface are quadratic as discussed in §5.3.1. This parametrisation has
a number of appealing properties, one of which is that it is relatively easy to elimi-
nate calendar spread arbitrage. This model is “inspired” by the stochastic volatility
models due to the fact that implied variance is linear in moneyness as K → ±∞ for
stochastic volatility models. Any parametrisation of the implied variance surface that
is consistent with stochastic volatility, needs to be linear in the wings and curved in
the middle. The SVI and quadratic models exhibit such properties. Gatheral also
states that:
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“if the wings are linear in strike (moneyness), we need 5 and only 5 pa-
rameters to cover all reasonable transformations of the volatility smile.”

This model was extensively tested using S&P500 (SPX) index option data with
excellent results.

5.3.4 The Quadratic Function for the ALSI Implied Volati-
lity Surface

The results from all the studies on deterministic volatility functions and the PCA
studies mentioned above form the basis in modelling the South African ALSI index
volatility surface. In scrutinising Eqs. (5.1) and (5.2) and taking illiquidity into
account, we postulate that the following three parameter quadratic function should
be a good model of fit for the ALSI implied volatility data (following the Beber
notation in Eq. (5.2)

σmodel(β0, β1, β2) = β0 + β1 K + β2 K2. (5.3)

In this equation we have

• K is the strike price in moneyness format (Spot/Strike),

• β0 is the constant volatility (shift or trend) parameter, β0 > 0. Note that

σ → β0
K→0

,

• β1 is the correlation (slope) term. This parameter accounts for the negative cor-
relation between the underlying index and volatility. The no-spread-arbitrage
condition requires that −1 < β1 < 0 and,

• β2 is the volatility of volatility (‘vol of vol’ or curvature/convexity) parameter.
The no-calendar-spread arbitrage convexity condition requires that β2 > 0.

Note that Eq. (5.3) is also linear in the wings as K → ±∞. In Fig. 5.3.4 we plot the
volatility skew for the near Alsi as obtained by implementing Eq. (5.3).

5.3.5 Volatility Term Structure

The functional form for the skew in Eq. (5.3) is given in terms of moneyness or in
floating format (sticky delta format). This DVF does also not depend on time. The
optimisation is done separately for each expiry date. In order to generate a whole
implied volatility surface we also need a specification or functional form for the at-
the-money (ATM) volatility term structure. It is, however, important to remember
that the ATM volatility is intricately part of the skew. This means that the two
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Figure 5.2: The ALSI volatility skew for the December futures contract at the begin-
ning of October 2009.

optimisations (one for the skews and the other for the ATM volatilities) can not be
done strickly separate from one another. Taking the ATM term structure together
with each skew will give us the 3D implied volatility surface.

It is well-known that volatility is mean reverting; when volatility is high (low)
the volatility term structure is downward (upward) sloping [Al 01, Ga 04]. This was
shown for the JSE/FTSE Top 40 index in Fig. 5.1. We therefore postulate the
following functional form for the ATM volatility term structure

σatm(τ) =
θ

τλ
. (5.4)

Here we have

• τ is the months to expiry,

• λ controls the overall slope of the ATM term structure; λ > 0 implies a down-
ward sloping ATM volatility term structure (this is plotted in Fig. 5.3.5), whilst
a λ < 0 implies an upward sloping ATM volatility term structure, and

• θ controls the short term ATM curvature.

Please note that τ is not the annual time to expiry. It actually is the “months to
expiry”. It is calculated by

dateexpiry − date0

365
∗ 12.
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Figure 5.3: The market fitted at-the-money volatility term structure for the ALSI at
the beginning of April 2009.

The reason for this notation is that if τ = 1, the ATM volatility is given by θ; the 1
month volatility is thus just θ. This makes a comparison between the South African
1 month volatility, and the 1 month volatilities offshore, like the VIX, easier.

A better understanding of these parameters is obtained if we consider the deter-
ministic term of the Heston stochastic differential equation [He 93]

dσ(τ) =
λ

τ
(ω − σI(τ)) dt (5.5)

where ω is a long term mean volatility and λ/τ is the mean reversion speed.
The solution to the ordinary differential equation in (5.5) is given by

σ(τ) = ω +
σ0 − ω

τλ
(5.6)

Comparing Eqs. (5.4) and (5.6) let us deduce that

• θ is a term that represents the difference between the current at-the-money
volatility σ0 and the long term at-the-money volatility ω, and

• λ is a parameter defined such that λ/τ is the mean reversion speed useful for
ATM calendar spreads.

In using the volatility skew function given in Eq. (5.3) and the volatility term
structure function shown in Eq. (5.4), we can generate the market equity index vola-
tility surface in the deterministic framework. We show the Alsi surface as determined
on 8 March 2011 in Fig. 5.3.5.
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Figure 5.4: The ALSI volatility surface on 8 March 2011.

5.3.6 FX Delta and Strike Relationship

There are four types of Deltas in the FX markets

• Spot Delta

• Forward Delta

• Spot Delta Premium-Adjusted

• Forward Delta Premium-Adjusted

We will denote the deltas by ∆S, ∆f , ∆Spa and ∆fpa.
The problem arises in the calculation of the strike K given the Delta ∆ and

volatility σ. This is a straightforward procedure for the first two delta types, as there
are closed form solutions available

K = fe−φN−1(φ∆f )σ
√

τ+ 1
2
σ2τ

K = fe−φN−1(φe
rf τ

∆S)σ
√

τ+ 1
2
σ2τ (5.7)

with N−1 being the inverse normal cumulative density function. However, we also
have

∆Spa = φerf τ K

f
N(φx). (5.8)

This can only be solved numerically.
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5.4 Vanna Volga and Implied Skews

The Vanna-Volga (VV) method is an empirical procedure that can be used to infer an
implied-volatility smile from three available quotes for a given maturity. It is based
on the construction of locally replicating portfolios whose associated hedging costs
are added to corresponding Black & Scholes prices to produce smile-consistent values.
Besides being intuitive and easy to implement, this procedure has a clear financial
interpretation, which further supports its use in practice.

The VV method is commonly used in foreign-exchange options markets, where
three main volatility quotes are typically available for a given market maturity

• the delta-neutral straddle, referred to as at-the-money (ATM). The premium of
a straddle yields information about the expected volatility of the underlying -
higher volatility means higher profit, and as a result a higher premium.

• the risk reversal for 25∆ call and put. The RR is a long out-of-the-money call
and a short out-of-the-money put with a symmetric skew.

• the (Vega-weighted) butterfly with 25∆ wings. A buyer of a Vega-weighted
butterfly profits under a stable underlying.

The application of VV allows us to derive implied volatilities for any option’s delta,
in particular for those outside the basic range set by the 25∆ put and call quotes.

A straddle together with a strangle give simple techniques to trade volatility. The
AtM volatility σAtM is then derived as the volatility of the delta-neutral straddle and
the volatilities of the risk-reversal (RR) and Vega-weighted butterfly (VWB) where
we have the following relationships

σRR = σ25∆Call − σ25∆Put

σV WB =
1

2
(σ25∆Call + σ25∆Put) − σAtM (5.9)

Implied volatility of a risk-reversal incorporates information on the skew of the implied
volatility curve, whereas that of a strangle on the kurtosis.

With the volatilities received in that way, Vanna-Volga allows us to reconstruct
the whole smile for a given maturity from three given market quotes only. We assume
a market where, for a given maturity T , three basic options are quoted: without loss
of generality we assume that the options are all call. We denote the corresponding
strike by Ki, i = 1, 2, 3 and K1 < K2 < K3. The market implied volatility associated
with Ki is denoted by σi, i = 1, 2, 3. This setting is consistent with the FX market
environment, where three main strikes are dealt.

In most practical applications we set σ2 = σAtM and this K2 = KAtM although
it is not strictly required. Castagna showed that the implied volatility σ(K) can be
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approximated by [Ca 10]

σ(K) = σ2 +
−σ2 +

√

σ2
2 + d1(K)d2(K)(2σ2D1(K) + D2(K))

d1(K)d2(K)
(5.10)

where we have

D1(K) = η1(K) − σ2

D2(K) =
ln K2

K
ln K3

K

ln K2

K1
ln K3

K1

d1(K1)d2(K1)(σ1 − σ2)
2

+
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σ
√
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[
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d2(K) = d1(K) − σ
√
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and further

η1(K) =
ln K2
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ln K3
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K1
ln K3

K1

σ1 +
ln K
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K

ln K2
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K1
ln K3

K2

σ3.

5.4.1 Vanna-Volga: From Theory to Market Practice

See article by Bossens, Rayeé, Skantzos and Deelstra



Chapter 6

Vanilla Currency Exotic Options

What is an “exotic option?” It is defined as being “anything but vanilla.” By this
we mean any option that has any associated feature that differs from a standard
European option [We 06].

A vanilla European call option has essentially two features: firstly, you have the
right to decide whether you want to exercise at expiry, Secondly, if you exercise you
have the right to purchase a specific amount of an underlying asset at the agreed upon
strike price. Exotic options can be quite different. While the payoff from a vanilla
option is a linear function of the underlying, the payoff from an exotic option can be
nonlinear like a digital that has a constant payoff. Note, due to the more complex of
exotic options, they are mostly European in nature.

6.1 Introduction

We now know people use options primarily ”to hedge” and to “implement a view on
the market.” Why would someone use an exotic option? In short, to either get more
tailored financial insurance or to position a more precise view on the market. This
means there are more than two features linked to exotic options.

We know the payoff from a standard vanilla option is

V = φmax[0, ST − K]. (6.1)

This means the only thing that matters, is where the underlying is trading at expiry.
A vanilla option is said to “not be path-dependent” on the underlying. The downside
of vanilla call options, for instance, is that they can be trading in-the-money most of
the time, but then a day or so before expiry there is a shock in the market and the
underlying falls in value and the option expire worthless. The question is, can such a
situation be overcome?

Let’s say we change the above payoff to be the following

V = φ max[0, Saverage − K] (6.2)

131
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where Saverage is the average of the underlying FX rate. We can even specify how the
average is calculated. It might be over the life of the option or it might be the average
over the last ten days before expiry. This means that if there is sudden drop in the
underlying the day before expiry, this call option might still pay out because the
average is still above the strike price. Such an option is called an “Asian option” or
“average rate option”. This option is path-dependent because the payout is dependent
on what happens with the underlying over the life of the option.

“Timing the markets” has been a topic of investigation for many decades. Every
investor dreams of the perfect system that will tell him to buy right at the bottom
or sell right at the top. The same holds for investors who want to hedge or gear their
portfolio by using options. If an investor buys a call and the market turns down he
always thinks that he should have waited to get the call at a lower strike. The same
holds if the investor bought a put as a hedge. If the market rallies and then retraces
he could have hedged at a better level if he waited. Now let’s define another option
to have a payoff

C = max[0, Smax − K] (6.3)

where we define Smax to be the maximum level that the underlying had over the
life of the option. This is called a “lookback” option and is sometimes described as
the “lazy” fund manager’s instrument because you will always get the best payout
without once trading in the market.

We will now describe some exotic options that have become standard across the
world. These options have been trading for such a long time already that people
started to call them “vanilla exotics” or “first generation exotics.”

6.2 Digital Options

Digital options (synonyms: binary options, all-or-nothing options, cash-or-nothing
options, asset-or-nothing options) pays a set amount if the underlying is above or
below the strike price, or nothing at all — hence, the names for these options, because
they pay 1 of 2 values1. A digital call pays off if the underlying asset is above a certain
value at expiration - the strike price; a digital put pays off if the underlying asset is
below the strike price at expiration. We show the discontinuous payoff functions in
Fig. 6.2.

6.2.1 Where Binary Options are Used

Binaries are typically bought and sold in the Over the Counter (OTC) markets be-
tween sophisticated financial institutions, hedge funds, corporate treasuries, and large

1In computer or mathematics jargon, a binary number is one which is given a value of either 0
or 1 and nothing else
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Figure 6.1: Payoff for a digital call and put option.

trading partners. They are widely used where the underlying instrument is a com-
modity, currency, rate, event, or index. For example:

Binary call and put options are popular in the platinum market, struck on the mid-
market price of the metal of a certain quality, quoted by several dealers over a stated
time period. Platinum trades in large varying quantities among major producers and
manufacturers, as well as between speculators and dealers. Prices are determined
between disparate parties, with varying frequency, and are not centrally reported or
confined to a centralized exchange. A third party calculation agent is often agreed
upon as part of the deal, to guarantee an uninterested price estimate obtained by
sampling various dealers on the expiration date.

Binary options are used widely to hedge weather events, such as hurricanes, tem-
perature, rainfall, etc. Major agricultural and transportation companies can be
severely affected by adverse weather conditions. Weather is highly unpredictable
and difficult to measure (e.g. what is a hurricane? How fast do the winds have to be?
How long does it need to last? Does it need to touch ground or can it remain over
water? What must the temperature be? Where is the exact location of the measure-
ment to take place?). This makes a binary option a perfect tool for hedging weather
events, as it allows the option seller (option writer) to assume a fixed amount of risk
tied to the occurrence of a future event whose magnitude is impossible to predict.
An uninvolved and highly reliable third party such as a government weather bureau
is typically used to determine whether the weather event has occurred.

Binary options are also traded on inflation figures such as the Consumer Price
Index (CPI) or Producer Price Index (PPI) in the U.S. These figures are reported
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fairly infrequently based on independent sampling methods, and are often revised
after they are released once input values are further verified. There is no continual
stream of prices because inflation is not an actual traded instrument (aside from
recent developments in exchange-traded inflation futures). Without continual input
prices, it is very difficult to mark-to-market vanilla American or European options,
whose value is highly dependent on dense volatility and price data. A binary option
allows the buyer to obtain inflation protection, while providing the option seller with
limited risk in the event that inflation jumps or drops unexpectedly.

Finally, binary options are popular in the foreign currency markets, especially on
illiquid and volatile currencies such as the Turkish Lira and Thai Bhat. Emerging
market currencies are often subject to rapid “jump risk” caused by political or eco-
nomic instability, or simply illiquidity due to the relatively small volume of foreign
trade. Sophisticated currency speculators borrow low-rate developed economy cur-
rencies such as USD or EUR and invest in high-rate emerging market currencies, then
purchase binary options as protection against currency risk in the high rate leg. This
allows the speculator to earn “carry” while protecting against “jump risk.”

6.2.2 Pricing Cash-or-Nothing

In the FX market, the cash can either be domestic or foreign. If we denote by S the
FOR/DOM exchange rate (i.e. 1 unit of foreign currency is worth S units of domestic
currency e.g., $1 = KSh 82) we the following two types of cash-or-nothing options:

In case of a digital paying out R units of the domestic currency we have in a Black

& Scholes world
Vcon = Re−rdT N(φy) (6.4)

where we use the same notation as in the Garman-Kolhagen formula given in Eq. 1.3.
While in case of a digital paying out R units of the foreign currency we have,

Vcon = RSe−rf T N(φx). (6.5)

Note that the R×S term must reflect the way the FX rate is quoted — is it USDKES
or KESUSD?

In general, an out-the-money binary option will be cheaper to purchase than an
equivalent out-the-money vanilla option, assuming the same underlying, strike, and
time to expiration. This is because the binary option has a fixed payout in the event
it expires in the money. The vanilla option, on the other hand, can theoretically pay
an infinite amount, limited only by the potential underlying price and credit of the
option seller. Out-the-money vanilla options typically have greater “time value” than
binary options.

This valuation difference between an out-the-money binary and vanilla option
has two benefits. First, it enables the option seller to assume a known limited risk.
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Second, from the perspective of the buyer, a binary option can offer significantly
greater leverage since the up front premium investment is lower.

When a binary option moves from being out-the-money to in-the-money, its theo-
retical value profile is much different than a vanilla option. The binary option moves
up in value very rapidly as it crosses the strike threshold. Conversely, when a binary
option moves from in-the-money to out-the-money, its value changes very quickly,
dropping towards zero in a steep fall, then leveling off.

Let’s look at an example: On a slow day in the market, a trader is looking for
trading opportunities and considers the “Spot EURUSD ¿ 1.2500 (3:00 p.m.) Binary.”

This contract allows a trader to take a position on where the spot Euro/US$ (e/$)
will be at 3 p.m. ET. A trader who believes that the rate will be above 1.2500 at 3
p.m. ET would buy the contract. A trader who believes that the rate will be at or
below that level would sell it.

The price of the Binary at any point prior to settlement reflects the market’s
assessment of the probability of the specified outcome occurring.

• At 2 p.m. ET, spot e/$ stands at 1.2490. The market for this Binary is bid
at 33 and offered at 37 (reflecting the market’s assessment of an approximately
35% probability that the spot e/$ rate will be above 1.2500 at 3 p.m.). A trader
believes that e/$ will drift upward in the next hour, so he places an order to
buy 10 contracts at 37. His order is executed on the Nadex exchange opposite
the existing offers at a cost of 10 contracts*$37 = $370.

• The trader’s risk is strictly capped. The trader can lose a maximum of 37*10
= $370. Similarly, the trader’s potential profit is limited by the contract size of
$100, so if the contract expires in the money, the trader will make $100-$37 =
$63 per contract or $630 in profit.

• At 2:55 p.m. ET, e/$ has risen 15 points, to 1.2505. The market for this
contract is now 95-98. The trader decides to try to take a profit rather than
waiting for expiration and places an order to sell 10 contracts at 95. This order
is executed on the exchange and the trader takes a profit of (95-37)*10 = $580.

This example illustrates the way that Binaries can multiply trading opportunities in
a quiet market — in this case a movement of just 0.12% in the underlying market
has resulted in the Binary’s value changing by 157%.

6.2.3 Pricing with a Skew

In the standard Black & Scholes model, one can interpret the premium of the binary
option in the risk-neutral world as the expected value = probability of being in-the-
money * unit, discounted to the present value.

To take volatility skew into account, a more sophisticated analysis based on call
spreads can be used. As a matter of fact, from the perspective of a trader, he actually
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Figure 6.2: A 10% digital with three call spreads with different strikes. - BO10 bl
169 F11.3

trades a call spread [DW 08]. When a trader sells a digital he books a call spread in
his risk management system instead of the exact terms of a digital. In this way he
can accurately risk manage his digital as call spread.

A binary call option is, at long expirations, similar to a tight call spread using two
vanilla options. One can model the value of a binary cash-or-nothing option, Vcon, at
strike K, as an infinitessimally tight spread, that is consider a call spread with strikes
K − ǫ and K + ǫ. Let C be the value of a vanilla call option, we then have

Vcon = lim
ǫ→0

C(S, K − ǫ) − C(S,K + ǫ)

2ǫ
= −∂C(S,K)

∂K
. (6.6)

This is intuitively explained in Fig. 6.2.3 where we have a 10% digital and three
call spreads [BO 10]. Note that to obtain the payoffs in the diagram we need one
95%-105%, but we need two of the 97.5%-102.5% call spreads and four of the 98.75%-
101.25% call spreads. This is a demonstration of the limit shown in Eq. 6.6 in the
sense that, as the distance between the call strikes and digital strike, ǫ gets smaller,
we need 1/ǫ call spreads of width 2ǫ to replicate the digital.

When one takes volatility skew into account, σ is a function of K such that

Vcon = −dC(S, K, σ(K))

dK
= −∂C(S, K)

∂K
− ∂C(S, K)

∂σ

∂σ

∂K
. (6.7)

The first term is equal to the premium of the binary option ignoring skew because

− ∂C

∂K
= −∂ (Se−rf τN(φx) − Ke−rdτN(φy))

∂K
= e−rdτN(y) = V noskew

con . (6.8)
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Note that ∂C/∂σ is the Vega of the vanilla call and ∂σ/∂K is sometimes called the
“skew slope” or just “skew”. Skew is typically negative, so the value of a binary call
is higher when taking skew into account. In short

Vcon = C(noskew) − V ega × Skew.

6.3 Barrier Options

Barrier options are standard calls and put except that they either disappear (the
option is knocked out) or appear (the option is knocked in) if the underlying asset
price breach a predetermined level (the barrier) [BB 98]. Barrier options are thus
conditional options, dependent on whether the barriers have been crossed within the
lives of the options. These options are also part of a class of options called path-
dependent options.

Apart from distinguishing between knock-in and knock-out options there is a
second distinction to make. If the options knocks in or out when the underlying price
ends up above the barrier level, we speak of an up-barrier. Likewise, if the price ends
up below the barrier we speak of a down- or lower-barrier [CS 97].

Barrier options are probably the oldest of all exotic options and have been traded
sporadically in the US market since 1967 [Zh 97]. These options were developed
to fill certain needs of hedge fund managers. Barrier options provided hedge funds
with two features they could not obtain otherwise: the first is that most “down-and-
out” options were written on more volatile stocks and these options are significantly
cheaper than the corresponding vanilla options. The second feature is the increased
convenience during a time when the trading volume of stock options was rather low.
In other words, barrier options were created to provide risk managers with cheaper
means to hedge their exposures without paying for price ranges that they believe
unlikely to occur. Barrier options are also used by investors to gain exposure to (or
enhance returns from) future market scenarios more complex than the simple bullish
or bearish expectations embodied in standard options. The features just mentioned
have helped to make barrier options the most popular path-dependent options being
traded world wide. They are also the most commonly traded kind of exotic options
in the FX markets.

6.3.1 Types of Barrier Options

Having mentioned that barriers come in all shapes and sizes, we consider the most
basic type of barrier option — the single barrier. This option comes in 8 flavours,
each with its own characteristics [Ko 03, Ca 10]

1. Up & In

2. Up & Out
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3. Down & In

4. Down & Out

Where each type can take the form of a call or a put, giving us a total of 8 single
barrier types. An “In” barrier means that a barrier becomes active once crossing
a particular barrier level; for example, an Up&In barrier becomes active when the
underlying price hits a barrier from below. In the currency market, the ‘out’ options
are known as ‘knockouts’.

Barrier options can also have cash rebates associated with them. This is a con-
solation prize paid to the holder of the option when an out barrier is knocked out
or when an in barrier is never knocked in. The rebate can be nothing or it could be
some fraction of the premium. Rebates are usually paid immediately when an option
is knocked out, however, payments can be deferred to the maturity of the option.

We talk about vanilla barrier options because variations on the basic barrier come
in many types [CS97]. First, the barrier need not be active during the whole life of
the option. In this case we talk of a partial barrier instead of a full barrier. A second
variation concerns the monitoring frequency. It is not always necessary or desirable
to check for a barrier hit continuously. Monitoring can be limited to once a day, a
week or month. In that case we speak of a discrete barrier and not a continuous
barrier. Thirdly, the barrier might not necessarily be linked to the underlying price.
It may be linked to another variable like another interest rate or another exchange
rate. This is referred to an outside barrier as opposed to an inside barrier.

6.3.2 Monitoring the Barrier

In practise one has to define precisely what it means for the barrier of an option to
be crossed. The issue is how the spot price of the underlying is tracked. Is the barrier
breached the moment the spot price crosses it intra-day? Further, does one use the
last trade, the bid, the offer or the middle of the double? One can also use the official
end-of-day closing prices meaning the barrier is only deemed breached if the closing
price crossed the barrier. One can also specify that the price of the underlying should
have breached the barrier level by at least a certain time period. These options are
called Parisian options [Hu 06].

The key to barrier event monitoring is transparency [Hs 97]. The option writers
need to be transparent as to what method is used to monitor whether a barrier has
been breached or not. This process needs to be impartial, objective and consistent.
For instance, when the last trade is used as monitor, the minimum size of the trans-
action needed to trigger a barrier event becomes crucial. This is to prevent dealers
from trying to push the spot price through the barrier level, at their own benefit.

Option writing warehouses need to put policies in place to prevent dealers from
deliberately triggering or defending barriers.
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6.3.3 Pricing Barrier Options

Robert Merton was first at deriving a closed-form solution for a barrier option where
he showed that a European barrier option can be valued in a Black & Scholes environ-
ment [Me 73]. Thereafter Rubinstein and Reiner generalised barrier option-pricing
theory [RR 91]. Rich gave an excellent summary of barrier options [Ri 94]. With
a rebate, continuous dividend yield and continuous monitoring of the barrier, the
following general equations are obtained

A = φS e−rf τ

(
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S
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where S is the spot FX rate, K is the strike price, H is the barrier (in the same
units as S and K), R is the rebate (in currency units), τ is the annualised time till
expiration, rd is the domestic and rf the foreign risk-free short term interest rates in
continuous format, σ is the volatility and φ and ηare binary variables set out in Table
6.1 below.
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All the other variables are defined as follows (with lnthe natural logarithm)
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(6.9)

λ = 1 +
µ

σ2

a =
µ

σ2

b =
1

σ2

[

√

µ2 + 2rσ2
]

(6.10)

µ = rd − rf −
σ2

2
.

N(•) is the cumulative of the normal distribution function.
The valuation formulas for the eight barrier options can be written as combinations

of the quantities A to F given in Eq. 6.9. The value of each barrier is also dependent
on whether the barrier H is above or below the strike price K. The pricing formulae
of all barrier options are set out in Table 6.1.

The abbreviations used are: DICK<H is short for “down and in call barrier option”
where the strike value K is less than the barrier value H. If the payment of the rebate
is deferred to maturity for the knock-out options, we put F = B in the equations
above. The following should be considered when implementing the formulas in Table
6.1

• The formulas given for the “in”-barriers are used to value the option before the
barrier is hit. After the barrier has been hit (the option was knocked in), the
buyer has an ordinary vanilla call or put. Use the Black-Scholes equations for
vanilla options to value the option.

• The knock-out’s value is zero after the barrier has been hit.

6.3.4 Reverse Knockout

In the currency market, a reverse knockout is an option that extinguishes an in-the-
money option. For example, a reverse knockout put has a barrier level lower
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Call Put
Down and In Barriers
φ = η = 1
DICK≥H = A + B
DICK<H = C − D + E + B

φ = −1, η = 1
DIPK≥H = D − A + E + B
DIPK<H = C + B

Up and In Barriers
φ = 1, η = −1
UICK≥H = C + B
UICK<H = D − A + E + B

φ = −1, η = −1
UIPK≥H = C − D + E + B
UIPK<H = A + B

Down and Out Barriers
φ = η = 1
DOCK≥H = C − A + F
DOCK<H = D − E + F

φ = −1, η = 1
DOPK≥H = C − D + A − E + F
DOPK<H = F

Up and Out Barriers
φ = 1, η = −1
UOCK≥H = F
UOCK<H = C − D + A − E + F

φ = −1, η = −1
UOPK≥H = D − E + F
UOPK<H = C − A + F

Table 6.1: Pricing Formulas for European barrier options. The variables are defined
in Eq. 6.9.

than the strike [Ta 10]. As an example, suppose you have a 5-month EURUSD
put with strike K = 1.4 and barrier H = 1.35. The put thus initially benefits from
falling EURUSD. However, if the EURUSD trades below 1.35, the put goes from
in-the-money to worthless. This is shown in Fig. 6.3. We also show the Delta and
Vega profiles. The discontinuity is reflected in the dramatic change in the Delta as
we approach the barrier level. The Vega drops to zero close to the barrier.

6.3.5 Parity Relationship

In-out parity is the barrier option’s answer to put-call parity: if we combine an in-
and an out- barrier option, both with the same strike and expiration date, we get the
price of a vanilla option. Here is how it works.

Consider a portfolio consisting of an in-option and its corresponding out-option
without any rebate. If the barrier is never reached, the in-option will end up worthless,
yet the out-option will have its corresponding vanilla option as payoff. On the other
hand, if the barrier is reached any time during the life of the option, the in-option will
have the corresponding vanilla option as its payoff whereas the out-option will end
up worthless. Since the portfolio and the corresponding vanilla option have exactly
the same payoff at maturity, arbitrage arguments guarantee that the portfolio and
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Figure 6.3: Payoff, Delta and Vega for Reverse Knockout Put - Tan bl 51.
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the vanilla option must be the same. Algebraically this identity is

Black − ScholesvanillaCall(Put) = OutCall(Put) + InCall(Put).

This is also known as the ‘kick-in-kick-out’ parity rule.

6.3.6 Behaviour of Barrier Options

Barrier options are less expensive than standard options but provide similar potential
investment returns. We list some points that need to be considered when trading
barrier options

• Knock-outs:

– The closer the barrier level to the current spot, the lower the barrier op-
tion’s premium;

– The higher the volatility, the lower the barrier option’s premium;

– The longer the time to expiration of the option, the lower the barrier
option’s premium.

For example, an investor that is long an up-and-out call, is forfeiting some of
the upside potential of an ordinary call but the payoff can be the same if the
barrier is never hit. If the barrier is hit, the investor looses his exposure and
the barrier must thus be less expensive than a standard option.

• Knock-in options’ behaviour is similar to standard options but the premiums
are also less

– The closer the barrier level to the current spot, the higher the barrier
option’s premium;

– The higher the volatility, the higher the barrier option’s premium;

– The longer the time to expiration of the option, the higher the barrier
option’s premium.

6.3.7 Continuity Correction

The aforementioned analytic formulas present a method to price barrier options in
continuous time, but often in industry, the asset price is sampled at discrete times,
where periodic measurements rather than a continuous lognormal distribution of the
asset prices is assumed. Most barriers are monitored at the end of day only meaning
that the official close of the day is the level to monitor and see whether it has breached
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Continuous ∆t = 0
Daily ∆t = 1/365
Weekly ∆t = 1/52
Monthly ∆t = 1/12
Hourly ∆t = 1/(365 × 24

Table 6.2: Monitoring barriers dicretely in time.

the barrier or not. Broadie, Glasserman & Kou calculated an adjustment to the
barrier value to account for discrete sampling as follows [BGK 97]

H = Heασ
√

∆t (6.11)

For “up” options which hit the barrier from underneath, the value of α is 0.582597,
whereas for “down” options where the barrier is hit from the top, the value of α is
-0.582597, where ∆t is the time interval. The time intervals used most often is set
out in Table 6.2.

6.3.8 The Delta

The risk parameters can be obtained by calculating the relevant partial derivatives of
the equations given in Eq. 6.9. To obtain the ∆ we calculate the partial derivatives
of the functions A to F with respect to S and by substituting these in the equations
given in Table 6.1 e.g. substitute A with ∂A/∂S. By taking the partial derivatives,
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with respect to S, we obtain
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.

6.3.9 Static Hedging

Some barriers are very difficult to hedge statically . With put-call-symmetry, however,
we are able to create perfect static replications for some barriers (if R = 0) with
zero cost strategies — this works best where the underlying instrument is a futures
contract. These hedging techniques are easily implemented and are described in the
Table 6.3 where we have assumed we are the writers of the barrier options and we
want to hedge our exposure.

The strategies in Table 6.3 are zero cost if everything stays the same i.e., interest
rates and volatilities. This hardly ever happens which means there are some risks
involved in doing this. In illiquid or underdeveloped markets, one might also not be
able to pick up the vanilla options at the strikes proposed.

Statically hedging barrier options not mentioned in Table 6.3 is impossible; those
can only be hedged dynamically i.e., re-value and manage risk on a daily basis. An-
other hedging strategy often used is, if the number of barrier options is small, all
can be dumped into a large portfolio of standard vanilla options and the risk is then
managed all together.

Delta hedging becomes very difficult if the time to expiry is short and the spot
price is near the barrier level. For a knock out, the delta can become very negative
near the knock out boundary. The hedger is in an unstable situation. Because the
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Up and In Call (K ≥ H)
Do nothing until barrier is hit. The moment the barrier is hit, buy a vanilla call
with the same strike as that of the up and in call originally sold.
Down and In Put (K ≤ H)
Do nothing until the barrier is hit. The moment the barrier is hit buy a put with
the same strike as that of the down and in put originally sold.
Down and In Call (K ≥ H)
With the sale of the barrier, go long K/H puts with strike H2/K. The moment
the barrier is touched, sell the puts and buy a call at the same strike as that of the
down and in call. If the barrier is never touched, all options expire worthless.
Down and Out Call (K ≥ H)
With the sale of the barrier, go short K/H puts with strike H2/K and buy a call
with strike K. The moment the barrier is touched, sell the calls and buy back the
puts.
Up and In Put (K ≤ H)
With the sale of the barrier, go long K/H calls with strike H2/K. The moment the
barrier is touched, sell the calls and buy a put at the same strike as that of the up
and in put. If the barrier is never touched, all options expire worthless.
Up and Out Put (K ≤ H)
With the sale of the barrier, go short K/H calls with strike H2/K and buy a put
with strike K. The moment the barrier is touched, sell the puts and buy back the
calls at the same strike as that of the up and out put.

Table 6.3: Hedging strategies for barrier options.



CHAPTER 6. VANILLA CURRENCY EXOTIC OPTIONS 147

delta is so negative he should take a very large short position in the underlying stock
and invest these proceeds in the money market. If the stock does not cross the barrier
he covers his short position with the money market funds, pays off the option and is
left with zero funds – the option would be alive and would expire in-the-money. If
the stock crosses the barrier (the option is knocked out) the delta becomes zero. He
should now cover his short position with the money market. This is more expensive
than before because the stock price has risen and consequently he is left with no
money. But, the option is not alive anymore so no money is needed to pay it off.

Because a large short position is being taken, a small error in hedging can create
a significant effect. To circumvent this, do the following: rather than using the
boundary condition v(t,H) = 0, 0 ≤ t ≤ T , (i.e. the value of the barrier option
should be zero at the barrier level), solve the barrier partial differential equation with
the new boundary condition

v(t,H) + αH∆(t,H) = 0, 0 ≤ t ≤ T (6.13)

where α is a “tolerance parameter”, say 1%. At the boundary, H∆(t,H) is the
currency value of the short position. The new boundary condition guarantees

• H∆(t,H) remains bounded;

• the value of the portfolio is always sufficient to cover a hedging error of α times
the currency value of the short position.

6.3.10 Pricing with the Binomial

Like most other path-dependent options, barrier options can be priced via lattice
tree such as binomial, trinomial or adaptive mesh models by solving the PDE using
a generalised finite difference method. The binomial tree method was discussed in
§1.13. A tree with a barrier os depicted in Fig. 6.4. An important aspect to note is
that with the existence of barriers, the ‘zig-zag’ movements of a binomial model will
undoubtedly create problems, as the true barrier of the barrier option in question is
often not the same barrier implied by the tree. We show the ‘zig-zag’ convergence
in Fig. 6.5. There are actually two barriers: the specified barrier and the ‘effective
barrier’ due to its position relative to the nearest nodes. This is shown in Fig. 6.6
[DK 95].

Boyle & Lau suggested a way to determine which nodes will give good approximate
pricing of a barrier option (where the inner and outer nodes are closest together). The
number of time steps which will give the most accurate prices when using the binomial
lattice is given as [RS 95, BL 94]

Node(i) =
i2σ2τ

(

ln S
H

)2 (6.14)
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Figure 6.4: A three step tree with a barrier.

Figure 6.5: Convergence to analytic value of a binomially-valued one year European
down-and-out call option as the number of binomial levels increases [DK 95].
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Figure 6.6: Specified and effective barrier. The specified barrier is at 125 but the
effective barrier is at 130.

where i = 1, 2, 3, . . . , N nodes.
Nonetheless, although these optimal nodes will provide a more accurate value for

the barrier, a large number of time steps should be used to determine a reasonable
value. The convergence of the binomial model is shown in Fig. 6.7.

6.3.11 Partial Time Barrier Options

Options where the barrier H is only considered for some fraction of the option’s
lifetime are referred to as partial-time or window barrier options. The most popular
is the early-ending barrier option, i.e. where the monitoring starts at the deal date
but it ends some time t1 before expiry where t1 ≤ T [Ha 07]. We show this in Fig.
6.8.

Partial-time barrier options give more flexibility in comparison to vanilla barrier
options, they also in general give lower premiums compared to the respective standard
vanilla option.

6.4 One-Touch Digitals

A type of exotic option that gives an investor a fixed payout R once the price of the
underlying asset reaches or surpasses a predetermined barrier H. This type of option
allows the investor to set the position of the barrier, the time to expiration and the
payout to be received once the barrier is broken.
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Figure 6.7: Wave-like pattern of the binomial model. We show the patterns for at-,
in-, and out-the-money options.

Figure 6.8: Early ending partial time barrier option.
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Only two outcomes are possible with this type of option

1. the barrier is breached and the trader collects the full payout agreed upon at
the outset of the contract, or

2. the barrier is not breached and the trader loses the full premium paid to the
broker.

This type of option is useful for traders who believe that the price of an underlying
asset will exceed a certain level in the future, but who are not sure that the higher
price level is sustainable. Because a one-touch option only has one barrier level, it is
generally slightly less expensive than a double one-touch option.

Speculative market participants like to use one-touch options as bets on a rising
or falling exchange rate. Clients, who prefer to hedge, trade one-touch options as a
rebate in order to secure themselves a compensation in case their strategy doesn’t
work out. One-touch options are also often integrated into structured products to
increase returns on forward and interest rates.

Similar as for vanilla barrier options we obtain the following factors (see Eq. 6.9)

A1 = Se−rf τN(φx)

B1 = Re−rdτN(φx − φσ
√

τ)

A2 = Se−rf τN(φx1)

B2 = Re−rdτN(φx1 − φσ
√

τ)

A3 = Se−rf τ

(

H

S

)2λ

N(ηy) (6.15)

B3 = Re−rdτ

(

H

S

)2λ−2

N(ηy − ησ
√

τ)

A4 = Se−rf τ

(

H

S

)2λ

N(ηy1)

B4 = Re−rdτ

(

H

S

)2λ−2

N(ηy1 − ησ
√

τ)

A5 = R

[

(

H

S
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N(ηz) +

(

H

S

)a−b

N(ηz − 2ηbσ
√

τ)

]
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Down-and-in cash-(at hit)-or-nothing Payoff: R (at hit)if for some τ ≤ T S(τ) ≤ H

S > H 0 if for all τ ≤ T , S(τ) > H

Value: A5; η = 1

Up-and-in cash-(at hit)-or-nothing Payoff: R (at hit)if for some τ ≤ T S(τ) ≥ H

S < H 0 if for all τ ≤ T , S(τ) < H

Value: A5; η = −1

Down-and-in cash-(at expiry)-or-nothing Payoff: R (at hit)if for some τ ≤ T S(τ) ≤ H

S > H 0 if for all τ ≤ T , S(τ) > H

Value: B2 + B4; η = 1, φ = −1

Up-and-in cash-(at expiry)-or-nothing Payoff: R (at hit)if for some τ ≤ T S(τ) ≥ H

S < H 0 if for all τ ≤ T , S(τ) < H

Value: B2 + B4; η = −1, φ = 1

Table 6.4: One touch options
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√

τ
ln

(

S

K

)

+ λσ
√
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√
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√
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z =
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√
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+ bσ
√
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µ

σ2

a =
µ

σ2

b =
1

σ2

[

√

µ2 + 2rσ2
]

µ = rd − rf −
σ2

2
.

Taking combinations of the factors in Eq. 6.15 leads to 28 different type of binary
barrier options. One touchers are described by four of these. They are given in Table
6.4.

Digital options are simple, easy and inexpensive to trade. If you think, the EU-
RUSD rate is going to be above 1.3500 after 2 months but you are not sure about
the timing of this move taking place within the next two months, buy a digital op-
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tion. If after 2 months, the EURUSD rate is indeed above 1.3500, you get your
profit/rebate/cash payout. If not, your digital option will expire. You with lose only
a small premium that you had to pay while purchasing the digital option.

One Touch Options are perfect for those currency traders who believe that there
will be a retracement and the price of a given currency pair will test a support or
resistance level with a false breakout. The one touch options will pay a profit if the
market touches the predetermined barrier level.

One touchers are often part of packages. Recall our example in §6.3.4. There we
had a reverse knockout. It is not uncommon for an investor to want his in-the-money
put option to be valueless if the underlying drops below the barrier H, but he may
well accept a certain fixed rebate should H be breached (since this would make the
package cheaper than a normal put option). Hence, a downside one touch added to
the reverse knockout put will satisfy this investor [Ta 10]. For this example we can
consider adding a one toucher with barrier H = 1.35 and notional 1.4-1.35=0.05 to
fully compensate the investor if the barrier is breached. Notice that this structure is
more valuable than a capped put or put spread (i.e. where you have bought a put
with strike at 1.4 and sold a put with strike 1.35). This must be case because if the
barrier is breached the payout will be $0.05 regardless of the value of EURUSD at
expiry. For this reason the notional of the rebate might be less than 0.05 to cheapen
the structure.

It is worth mentioning that a one touch option cost about twice that of a normal
digital (with stike = barrier) option for the following reason: you can sell a one touch
option and buy two digital options to hedge. If the one toucher never breaches the
barrier, then neither will the digitals and all are worthless. If the one touches does
touch the barrier at a time prior to expiry, the digitals will roughly be at-the-money
since spot will be at the barrier level which is also the strike. Now, at-the-money
digitals has a value of roughly 0.5 whereas a one toucher pays off one and hence has
a value of one.

6.5 No-Touch Digitals

A type of exotic option that gives an investor a fixed payout R if the price of the
underlying asset does not reach or surpasses a predetermined barrier H. This type
of option allows the investor to set the position of the barrier, the time to expiration
and the payout to be received.

This type of option is useful for a trader who believes that the price of an underly-
ing asset will remain range-bound over a certain period of time. A No-Touch Option
is a great way to profit from a trending market. The no-touch option pays a fixed
amount if the market never touches the barrier level that you choose. All you need
to do is to determine the desired payoff, the currency pair, the barrier price and the
expiration date.
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Down-and-out cash-or-nothing Payoff: R (at hit)if for some τ ≤ T S(τ) > H

S > H 0 if for all τ ≤ T , S(τ) ≤ H

Value: B2 − B4; η = 1, φ = 1

Up-and-out cash-or-nothing Payoff: R (at hit)if for some τ ≤ T S(τ) < H

S < H 0 if for all τ ≤ T , S(τ) ≥ H

Value: B2 − B4; η = −1, φ = −1

Down-and-in cash-(at expiry)-or-nothing Payoff: R (at hit)if for some τ ≤ T S(τ) ≤ H

Table 6.5: No-touch options

No-touchers are the opposite to the one touchers. There are two of these that we
list in Table 6.5.

6.6 Double Digital Options

Let’s now extend the analysis up to this point and add another barrier to the option.
We talk about a ‘double barrier’ if there is a barrier below the spot price (called the
lower barrier) and another barrier above the spot price (called the upper barrier).

A Double No-Touch option pays at expiry the notional amount contingent on
the event that neither upper or lower barrier has been breached during the life of
the option. This type of option is useful for a trader who believes that the price of
an underlying asset will remain range-bound over a certain period of time. Double
no-touch options are growing in popularity among traders in the forex markets.

For example, assume that the current EURUSD rate is 1.3000 and the trader
believes that this rate will not change dramatically over the next 14 days. The trader
could use a double no-touch option with barriers at 1.29 and 1.31 to capitalize on
this outlook. In this case, the trader stands to make a profit if the rate fails to move
beyond either of the two barriers.

A one-touch double barrier option is the opposite to the double no-touch. This
means this options pays off a cash amount if one of the two barriers are touche before
expiry. This options pays off zero if neither barrier is touche before expiry.

A semi-closed form formula for the valuation of both of these options has been
published by Hui [Ha 07]. The formula is quite involved but do not give the market
price in any case. This is due to the volatility skew that needs to be taken into
account. Tree methods works quite well.

6.7 Forward Start Options

Vanilla options become effective immediately after settlement. Forward-start options,
however, are options that are paid for now but will start at some pre-specified time
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in the future with the strike price set to be the underlying asset price at the time
when it starts. Alternatively, forward-start options are at-the-money options when
they actually start, yet, the strike price is not known at present.

Forward-start options are less expensive than vanilla options and are used by cost
sensitive investors. These options also allow an investor or risk manager to lock in
the level of volatility at a time when the market’s volatility expectations are low and
when they expect volatility to increase in the future.

6.7.1 Advantages

• Protection against spot market movement and against increasing volatility [Wy 06],

• Buyer can lock in current volatility,

• Spot risk easy to hedge.

The key reason for trading a forward start option is trading the forward volatility
without any spot exposure. In quiet market phases with low volatility, buying a
forward start is cheap. Keeping a long position will allow participation in rising
volatility, independent of spot prices.

6.7.2 Valuation

A forward-start option with a time to maturity T starts at-the-money or proportion-
ally in- or out-of -the-money after a known elapsed time ζ in the future. The strike
is set equal to a positive constant αtimes the asset price S after the time ζ. If α < 1,
the call (put) will start 1 − αpercent in-the-money (out-of-the-money); if α = 1, the
option will start at-the-money; and if α > 1, the call (put) will start α−1 percentage
out-of-the-money (in-the-money) [Ha 07].

Rubinstein showed that a European forward-start option can be valued in a Black

& Scholes environment [Ru 91]. The payoff of a European style forward-start option
can be expressed as

VFSO = max [φ {S(T ) − αS(ζ)} , 0]

with φ = 1 for a call and φ = −1 for a put and ζ is a time such that ζ < T .
It seems difficult to price a forward-start option because the strike priceK = αS(ζ)

is not known at present. However, suppose for the time being that the underlying
asset price at time ζ is known. The value of a forward start option, at time ζ, is
then obtained by using the generalised Black-Scholes equation where we substitute
K = αS(ζ)into Eq. 1.3 such that

VFSO(ζ) = φS e−rdζ
[

e−rf τN(φx) − α e−rdτN(φy)
]

(6.17)
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and from (1.4) we have

x =
1

σ
√

τ

{

ln
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1
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)

+

(

rd − rf +
σ2

2

)

τ

}

y = x − σ
√

τ . (6.18)

From Eq. 6.18 we see that a forward-start option is a vanilla option with strike
αS and time to maturity τ = T − ζ, that is adjusted for any dividends paid over the
period from time t to the grant time ζ. The value of the option at any time t ≥ ζ (i.e.,
after time ζ has elapsed) is just given by the generalised Black & Scholes equation in
Eq. 1.3 with strike K fixed at time t = ζ.

In valuing a FSO, use the forward volatility that is calculated as follows: let σζ

be the volatility of a vanilla option contract that expires at time ζ and let σT be the
volatility of a vanilla option contract that expires at time T . The forward volatility
from ζ to T is then given by

σ =

√

σ2
T T − σ2

ζζ

T − ζ
(6.19)

6.7.3 Peculiarities of Forward-Start Options

• FSO options are less expensive than standard options.

• All of the risk parameters exhibit discontinuities at the grant time.

• The theta and gamma is zero before the grant time.

• After the grant time, a FSO is exactly the same as a vanilla European option.

6.7.4 Risk Parameters and Hedging FSO

The risk parameters can be obtained by calculating the relevant partial derivatives
of Equation (6.17). This gives

∆FSO =
∂VFSO

∂S
= φ e−rf ζ

[

e−rf τN(φx) − α e−rdτN(φ y)
]

(6.20)

which leads to the fact that the Gamma is always zero. Similarly we can obtain the
Vega where

V egaFSO =
∂VFSO

∂σ
= Se−rf τ

√
τN ′(x) (6.21)

and the Theta is given by

ΘFSO =
∂VFSO

∂τ
= φSe−rf ζ

[

−rf e−rf τN(φx) − α rde−rdτN(φ y)
]

+ Se−rf T σN ′(x)

2
√

τ
(6.22)

Here, N ′(•) is the cumulative normal probability function.
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Figure 6.9: Possible price paths for some underlying asset.

6.8 Cliquet/Ratchet Options

These exotic options were first developed in France and were based upon the CAC
40 stock index. The cliquet starts out as an ordinary vanilla option with a fixed
strike price, but the strike is reset to be a positive constant, times the asset price on
a set of dates that has been predetermined [To 94]. When the strike price is reset,
any positive intrinsic value is locked in. The profit can be accumulated until final
maturity, or paid out at each reset date. If the underlying asset price, at the next
reset date, is below the previous level, nothing happens except that the strike price
has been reset at a lower level.

A Cliquet option thus consists of a vanilla option that expires at the first reset
date together with a series of forward starting options where the start dates are the
next reset dates and the expiry dates are the reset dates just after those dates. The
locked in values can be paid out at the reset dates (the so-called “pay-as-you-go”
Cliquet) or at expiry (the so-called compound or “pay-at-end” Cliquet). The latter
Cliquet is slightly cheaper than the first. A Cliquet option is more expensive than
a vanilla option due to the chances of an extremely favourable payoff that can be
obtained. By buying a Cliquet the investor also locks in the current volatility and
interest rate for every forward starting option in the series of options.

The major advantage of the Cliquet is that the probability of some payout is high.
There is a high probability that even if the market closes lower/higher at expiry, that
it will have closed higher/lower at, at least one of the reset dates. This is illustrated
in Fig. 6.8 Figure 6.9 shows three possible price paths for some FX rate starting at
time t0 with a starting value of S. There are three reset dates at t1, t2 and T . The
prices on these dates are S1, S2 and ST respectively and the strike price is K. The
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payoffs are summarised in Table 6.8.

Path Vanilla Call Payoff Cliquet Payoff
(a) 0 (S2 − S1)
(b) ST − K (S1 − K) + (ST − S2)
(c) ST − K ST − K

The Cliquet is suitable for investors with a medium term investment horizon. It
is less risky than ordinary medium term options, as there is less specific risk i.e.
the reset facility gives the buyer a “second” and “third” chance. This increases the
chance of a payout, but must be balanced with the higher premium cost. As a series
of forward-start options, the Cliquet is attractive to passive investors as it requires
no intermediate management. Investors use Cliquets to take advantage of future
assumptions about volatility.

An age old complaint of investors is that when a fund has performed well in the
past it usually loses all the profits in one particular bad patch. If this happens the
investor will ask the question: why didn’t you take profits when you had them? Fund
managers who must report at the end of every quarter will find a Cliquet very handy.

The price of a ratchet option is

Vcliquet = φS

n
∑

i=1

e−dti
[

e−dτiN(φd1i) − αe−rτiN(φd2i)
]

(6.23)

where ti are the times to the strike resets, τi = Ti − ti where Ti are the expiry times
of the forward-start options and xi and yi are defined in Eq. 6.18 with τ substituted
with τi. Usually α = 1 (options are at-the-money) and the first option is a vanilla
European starting today (t1 = 0) and it expires at T1; the second option’s strike is
fixed at time t2 and it expires at time T2; etc.

To make the pricing of cliquets more rigid one should use the correct interest rate
term structures to calculate the forward interest rates and forward volatilities.

6.9 Lookback Options

The dream contract has to be one that pays the difference between the highest and
the lowest asset prices realized by an asset over some period. All speculators are
trying to achieve such a trade. This can be achieved by a lookback option. There are
two types of lookback options

1. Fixed Strike Lookback – The strike is fixed at the start. At maturity, the buyer
can “lookback” over the life of the option and choose the expiry value of the
underlying at the level that maximizes his payoff.
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Figure 6.10: You always get the best payout from a lookback. The dots show the
highs and lows of each price path.

2. Floating Strike Lookback – The strike is fixed at maturity. At maturity the
buyer can “lookback” and get the most favorable strike that maximizes his
payoff between the strike and expiry value of the underlying.

Lookbacks are useful if an investor is uncertain when to enter or exit a market.
The floating strike lookback will always give an investor the best entry point into
a market and the fixed strike lookback the best exit point out of a market — the
investor always gets the “better deal”. This is shown in Fig. 6.10 where we show
three possible price paths. The dots show the highs and lows of each path.

Due to this, lookbacks are expensive. A rule of thumb is that an at-the-money
lookback option when issued will be priced at about two times a standard option.
Pricing formulas for continuous lookbacks are available (see [Ha 07]). However, due
to their high prices, they are made cheaper by monitoring the lookback discretely in
time. This means the highs and lows are only monitored on certain dates. This can
be monthly of weekly or even quarterly. Discrete lookbacks can only be valued by
numerical methods. One can also shorten the lookback period. The option is then
called a partial lookback and these options can also be valued by numerical methods
only.

Lookbacks are not very common in the FX markets.

6.10 Asian Options

Asian options are options based on some average of the underlying asset price. Gen-
erally, an Asian option is an option whose payoff depends on the average price of
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the underlying asset during a pre-specified period within the option’s lifetime, and a
pre-specified observation frequency.

They are very popular hedging instruments for corporates.

6.10.1 Uses in the FX Markets

• Protection against rapid price movements or manipulation in thinly traded un-
derlyings at maturity. They lower the volatility risk.

• Reduction of hedging cost due to the lower option premium compared to vanilla
options.

• Adjustment of option payoff to payment structure of the firm. Asians can be
used to hedge a stream of (received) payments from offshore.

6.10.2 Fixed Strike Arithmetic Average Options

A fixed strike arithmetic average option is an option where the strike is set on the
deal date and the average is taken of the underlying asset to determine the payoff.
These options are also known as Asian Out options. The payoff is given by

V = max [0, φ (SA − K)]

with K the strike and SA the discretely sampled average of the asset price defined by

SA =
1

n

n
∑

i=1

Si.

Here we take the average over n intervals where Si is the asset’s spot price at every
interval i. Also, φ is a binary variable where φ = 1 for a call and φ = −1 for a put.

There is currently no known closed form solution to the arithmetic average option
problem. The problem is that investors usually measure the average at discrete dates.
Vorst proposed an approximation where he adjusts the strike price of the option
[KV 90]. His method is quite general and take the actual dates as inputs. This
means the measuring of the average can start immediately or only a couple of days
before expiry.

We define the option as follows: let t0 be the deal date (annualised time, usually
zero) and we have n averaging dates over which the average will be taken. We
also let m be the number of averaging dates already passed if we have entered an
averaging period. We can then define the times on which the averaging is done
as ti (i = m + 1,m + 2,m + 3, . . . , n). This is explained by looking at the time line
below. When the deal is done at first, the averaging starts at some point after the
deal date. Let t1 be the first averaging date. We show this in Fig. 6.11. However, as
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Figure 6.11: Time line for an Asian option.

time passes by the valuation date t can be after the averaging has started such that
t > t1. We then count how many averaging dates have we passed and put that equal
to m. There are thus n − m averaging dates left.

Vorst’s solution holds in the Black-Sholes environment and he found the value of
the option to be at any time t

VA(t) =
n − m

n
e−rdτφ

(

eM+V/2N(φx) − K ′ N(φ y)
)

. (6.24)

Now we can define the variables used in Eq. (6.24)

x =
1√
V

(M − ln(K ′) + V )

y = x −
√

V
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M = ln (S(t)) +
1
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n
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τi (6.25)

V =
σ2

(n − m)2

n
∑
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∑
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τi = ti − t0
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(

K − m

n
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∑
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Here S(t)is the spot price on the valuation date t and S(ti) is the spot price on
the averaging date ti. We then define SA(m) as the average of the spot price thus far
if we have entered an averaging period and we have passed m averaging dates. As an
example, look at the time line. We see m = 2 and SA(m) = 1

2
(S(t1) + S(t2)).

Also, N(•) is the cumulative of the normal distribution function. Note the fol-
lowing, if we are outside of the averaging period m = 0 and thus K∗ = K and
SA(0) = 0.

Curran also gave an efficient routine for valuing Asians options [Cu 92].

6.10.3 The Greeks

Using Vorst’s approximation, we can determine the Greeks. The Delta is given by

∆A(t) =
n − m

n
e−rdτ

(

1

S(t)
eM+V/2 [N(φx) − N(φ y)] + AN(φ y)

)

and the Gamma is given by

ΓA(t) =
−(n − m)

n
e−rdτeM+V/2N ′(x)√

V
φ

(

1

S(t)

(

1 − eM+V/2
)

+
A

K ′

)

×
(

1

S(t)
+

1

K ′

[

A − 1

S
eM+V/2

])

.

Here, N ′(•) is the cumulative normal probability function and all other quantities are
defined in Eq. 6.26. We calculate the Theta by obtaining the 1 day time decay such
that

Θ(t) = VA(t + 1 day) − VA(t)

and the Vega is obtained similarly by adding 1% to the current volatility such that

Λ(t, σ) = VA(t, σ + 1% ) − VA(t, σ)

and the Rho is obtained similarly by adding 1% to the current domestic interest rate
such that

ρ(t, rd) = VA(t, rd + 1% ) − VA(t, rd)

6.10.4 Example

Let’s look at the USDZAR FX rate. In Fig. 6.12 we plot the exchange rate since the
beginning of the year. On 25 January you want to buy a call option. The Rand is
busy appreciating against the Dollar. On this date the Rand was trading at 7.0428.
Let’s assume this option expires on Friday 4 March, the volatility is 15%, rd = 6%
and rf=2%. A vanilla call cost R0.14993. On 4 March the ZAR rate settled at 6.866.
A vanilla call would have been out-the-money and expired worthless.

However, if you considered an Asian Out with an average taken from 5 February
daily. The cost of this Asian was R0.1066 - cheaper than the vanilla. At expiry, the
average was R7.12078 - meaning the Asian expired in-the-money.
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Figure 6.12: Asian option on USDZAR.

6.10.5 Floating Strike Arithmetic Average Options

These options are also known as Asian In options. Here, the strike price is determined
by an average of the underlying on a set of predetermined observation dates. We then
have by

V = max [0, φ (S − KA)]

with S the spot price and KA the discretely sampled average of the asset price defined
by

KA =
1

n

n
∑

i=1

Si.

This option is useful in illiquid markets where one needs to hedge a structure like
a spread by either buying or selling the Delta. If the volumes are such that the Delta
will only be done over a few days, structure the product such that the strike is the
average price over a few days.

These options can only be valued by numerical methods.

6.10.6 In-Out Asian Options

An option can be defined whereby the strike is set as the average of the underlying
over the first couple of days of the options and the final spot to use is the average
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Figure 6.13: In-Out Asian on USDNGN.

over the last couple of days. This option’s payoff is given by

V = max [0, φ (SA − KA)] .

Unfortunately, these options can only be priced by numerical methods.
We show an example of this type of option in Fig. 6.13 for an option on USDNGN.

Figure 6.13 shows that USDNGN had a big drop from 1 October 2010 until the
beginning of November. If you bought a vanilla call on 1 October 2010, the ATM
strike would have been 154.5. Let’s assume the option expired on 4 March 2011. On
that date the FX rate was 154.2. Your vanilla call expired worthless. However, if
you bought an In-Out Asian where the strike was the average over the first twenty
trading days, and the payout rate the average over the last ten trading days you would
have had KA = 151.814 and SA = 153.394 meaning the option would have expired
in-the-money.



Chapter 7

Complex Currency Derivatives

These options are also called ‘second generation exotic options.’

7.1 Roll Up Puts and Roll Down Calls

These options are also called ‘timer’ options.
These structures appeal to investors who feel that they may be early in imple-

menting a bullish or bearish position i.e., they may feel the market will go down or
up with sudden reversals later on. An example of such a view is given in Fig. 6.12.

They are combinations of barrier down-and-out calls and up-and-out puts (see
§6.3. Roll-ups and -downs are synthetics hedging structures that are put in place on
top of existing long or short positions in the underlying — these are overlay structures.

The value of the roll down call can be calculated as follows: let H1, H2, . . . , Hn

be a decreasing sequence of positive barrier levels. Similarly, let K0, K1, . . . , Kn be
a decreasing sequence of strikes, with Ki ≥ Hi, i = 1, 2, . . . n. The roll down call is
decomposed into down-and-out calls such that[CEG 97]

RDC(Ki, Hi) = DOC(K0, H1) +
n

∑

i=1

[DOC(Ki, Hi+1) − DOC(Ki, Hi)] (7.1)

where DOC(Ki, Hi) is a down-and-out call with strike Ki and barrier level at Hi.
For a roll up put we have an increasing set of barrier levels where Ki ≤ Hi, i =

1, 2, . . . n such that

RUP (Ki, Hi) = UOP (K0, H1) +
n

∑

i=1

[UOP (Ki, Hi+1) − UOP (Ki, Hi)]. (7.2)

These structures are depicted in Figs. 7.1.
To explain the mechanics of a roll-up put lets look at an example where there are

two roll-up points. We thus have the current market level at K0 and two levels H1

165
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Figure 7.1: A: Roll down call. B: Roll up put.

and H2 where H1, H2 > K0. The value of the roll-up put given by

RUP (K0) = UOP (K0, H1) + UOP (K1, H2) − UOP (K1, H1)

where K1 = H1.
The buyer of this roll-up put option buys an up-and-out-put struck at K0 which

vanishes as soon as the barrier at H1 is breached. This put is active and behaves
just like a vanilla put which means the investor’s long position in the underlying is
immediately hedged against the market turning down. He/she also buys an up-and-
out-put struck at K1 = H1 which vanishes as soon the barrier at H2 is breached.
He/she then shorts an up-and-out-put struck at K1 that will vanish once the level H1

has been breached. Graphically this is be depicted in Fig. 7.2. The thick line is the
original long position and the thin lines depict the up-and-out-puts.

The dashed lines in Fig. 7.2 show the possible payoffs that are possible. If H1 is
never breached this structure behaves like an ordinary vanilla call (the put struck at
K0 together with the long position in the underlying gives a synthetic call struck at
K0). This means that the investor is immediately hedged against the market moving
below K0. Also, the long and short puts struck at K1 cancel one another. The payoff
is thus given by

ST + max(0, K0 − ST )

where ST is the value of the underlying at expiry.
If H1 is breached the following happens: the long put struck at K0 and the short

put struck at K1 are knocked out. In essence the strike of the synthetic call has thus
moved up to K1 and the investor is hedged such that if the market moves below K1,
he/she will at least receive K1 −K1 is thus locked in/guaranteed to the holder of the
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Figure 7.2: A roll up put structure.

underlying long position and the payoff is given by

ST + max(0, K1 − ST ).

If H2 is breached the whole synthetic hedging structure vanishes and the investor
is left with the original long position with payoff just ST . To circumvent this from
happening it is advised that the last roll-up level be placed so far from the original
level at K0 that the chances of it being breached is nearly zero. On the other hand, the
investor might decide that once the last level is breached, the original long position
is so far in-the-money that he/she might risk market conditions and a subsequent
reversal.

As an example we look at Fig. 6.12 and the example discussed in §6.10.4. An
investor wants to buy a put on 25 January 2011. The cost of the vanilla put is
R0.12184. He, however feels it is early in implementing this and add two barriers at
103% and 106% (reset levels). We then have S = K = 7.0428, H1 = 7.2541 and H2 =
7.4654. This timer put cost R0.15506. It should be more expensive than the vanilla
due to the opportunity to get a better strike. Now, on 4 March, the ZAR level was
at 6.866. The vanilla would have been in-the-money by 7.0428− 6.866 = 0.1768 — a
hansom profit. However, on 10 Feb 2011 the ZAR rate moved to 7.2726 breaching the
first barrier level. It means that the strike of the put is reset at this level. The second
reset level is never breached and the payout would have been 7.2541−6.866 = 0.3881
— an even more hansom profit!

7.1.1 Ladder Options

There has recently been a lot of interest in derivatives which guarantee the return
of capital invested or allow the purchaser to periodically lock in gains. One way to
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achieve this is by using ladder options. Ladder options are similar to a lookback
options.

The buyer of a floating strike lookback call buys an option at a certain strike, say
K0. Now, as soon as a more advantageous level is registered, the strike is adjusted to
this level, say K1 where K0 < K1. This means that the difference between the new
strike and original strike level, (K1 − K0), is locked in and guaranteed to the holder
of the lookback.

It is, however, also possible to do this only if the difference with the original strike
exceeds a certain minimum predetermined value. This is then a ladder option. This
option is similar to the Cliquet. The Cliquet is linked to time where a Ladder is
linked to levels of the underlying.

A ladder option has a set of Npredetermined levels (rungs) Li, i = 1, 2, . . . , N
where, every time the market breaches a certain ladder level, the intrinsic value at
that level is locked in and will be paid out to the holder at expiry. A European ladder
will have the following payoff

LO = max [φ (ST − K) , max {φ (Li − K) , 0} , 0]

where LOis the terminal value of the ladder option, ST is the value of the underlying
quantity at expiry time T , K is the initial strike price, φ = 1 for a call and φ = −1
for a put and Liis the ith ladder level reached in the life of a option. This function
shows that the pay-off for a ladder option is the greater of a plain vanilla call option
with strike K and the highest ladder level reached, or zero.

As an example, look at Fig. 7.3. This shows paths (a), (b), (c) and (d) that
are different possibilities of the underlying over time. L1 and L2 are two rungs of a
two-rung ladder call option. The payoff for path (a) at expiry is the terminal spot
value minus the strike ST − K — the same as for a vanilla call; the payoff for path
(b) at expiry will be L2 − K; the payoff for path (c) at expiry will be L1 − K; and
the payoff for path (d) is zero. The payoff is thus similar to that of a lookback option
with discrete lock-in levels. In the limit when the number of rungs,N → ∞ we get
the vanilla fixed strike lookback option.

A ladder is a total synthetic instrument that gives synthetic exposure to the
market. The exposure is obtained through the vanilla call and the gains are locked
in by using barrier options.

To synthesise a ladder call with initial strike K0, we let L0, L1, L2, . . . , LN be a
predetermined increasing set of barrier levels such that K0 = L0, then

LC(K0, Li) = C(K0) +
N

∑

i=1

[UIP (Li, Li) − UIP (Li−1, Li)];

and for a ladder put we have a predetermined decreasing set of barrier levels

L0, L1, L2, . . . , LN where K0 = L0
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Figure 7.3: Possible price paths showing the dynamics of a Ladder option.

and thus

LP (K0, Li) = P (K0) +
N

∑

i=1

[DIC(Li, Li) − DIC(Li−1, Li)]

where C(K0) and P (K0) is a vanilla call and vanilla put struck at K0 respectively
and UIP (x, y) is an up-and-in-put with strike x and barrier level y and DIC(x, y) is
a down-and-in-call with strike x and barrier level y.

This shows that ladder options are packaged from ordinary vanilla and barrier
options. A ladder option is cheaper than a lookback but more expensive than the
corresponding vanilla option. The reason for this is that a ladder consists of a vanilla
option and two barrier options. Ladders are hedged by using the strategies given for
barrier options.

To explain the mechanics of a ladder lets look at an example where there is only
one rung at level L1 such that L1 > Kand L0 = K. The value of this ladder call is
given by

LC(K,L1) = C(K) + UIP (L1, L1) − UIP (L0, L1).

The buyer of a ladder call option buys a vanilla call, struck at K; he/she also buys
an up-and-in-put (UIP), struck at L1, that will only be activated once the underlying
has breached the level at L1. He/she then shorts an up-and-in-put struck at K that
will be activated once the level L1 has been breached. Graphically this is be depicted
in Fig. 7.4.

The dashed line in Fig. 7.4 shows the payoffs that are possible. If L1 is never
breached this structure behaves like an ordinary vanilla call (the puts are not activated
and do not exist) which means that if the expiry value of the underlying is below K,
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Figure 7.4: The mechanics of a Ladder call.

the payoff of the whole structure is zero. If L1 is breached, L1 − K is guaranteed to
the holder and, in essence, the vanilla call’s strike level is increased to L1. This is
explained as follows:
the two up-and-in-puts are activated and are now vanilla put options. The short
put and long call (both struck at K) together form a synthetic long position in a
forward contract where F = C(K) − P (K). The payoff for the ladder call now is
just LC = F + P (L1). At expiry, if the underlying’s price ends above the barrier,
P (L1) is out-the-money and the payoff is just the payoff for F . Actually P (K) is
also out-the-money and the total payoff is just that of the vanilla call i.e., ST −K. If
the price ends below the barrier, the total payoff is just the payoff for LO. The total
payoff is given by

C(K) − P (K) + P (L1) = max(0, ST − K) − max(0, K − ST ) + max(0, L1 − ST ).

This will always give a payoff of L1 − K, for any ST ≤ L1 and ST − K if ST ≥ L1.
As an example let’s look at the same one we discussed previously under timers

and in §6.10.4. An investor wants to buy a call on 25 January 2011. We have the
expiry as Friday 4 March, the volatility is 15%, rd = 6% and rf=2%. The cost of
the vanilla call is R0.14993. He, however feels it is early in implementing this and
add two rungs at 103% and 106%. We then have S = K = 7.0428, H1 = 7.2541
and H2 = 7.4654. This Ladder cost R0.20312. It should be more expensive than the
vanilla due to the opportunity to lock in gains. Now, on 4 March, the ZAR level
was at 6.866. The vanilla would have been out-the-money. However, on 10 Feb 2011
the ZAR rate moved to 7.2726 breaching the first rung and locking in an amount
of 7.2541 − 7.0428 = 0.21128. The second rung is never breached. However, even
though the ZAR was at a level of 6.866 on 4 March 2011, the payout of the Ladder
was 0.21128.
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7.2 Variance Swaps

Volatility is a measure of the risk or uncertainty and it has an important role in
the financial markets. Volatility is defined as the variation of an asset’s returns —
it indicates the range of a return’s movement. Large values of volatility mean that
returns fluctuate in a wide range.

Derivatives market professionals know that managing volatility is central to hedg-
ing the risk in an options portfolio. Although the Black-Scholes-Merton framework
for hedging options is both well-established and well-understood, spectacular losses
in volatility trading have been dealt to broker-dealers and hedge funds in the past.

Alas, the tools for managing volatility risk are few. But a relatively new product-
the variance swap-offers investors a straightforward vehicle for achieving long or short
exposure to market volatility. Although it’s called a swap contract, it is fundamentally
an option-based product with properties similar to those of options. The product
consequently represents a significant addition to the overall landscape of volatility-
driven instruments and can fill a useful role for investors seeking optionality in one
form or another.

Black & Scholes defined volatility as the amount of variability in the returns of the
underlying asset. They determined, what today is known as, the historical volatility
and used that as a proxy for the expected or implied volatility in the future. Since
then the study of implied volatility has become a central preoccupation for both
academics and practitioners.

In Fig. 7.5 we show the 3 month volatilities for USDZAR and USDKES. It is
clear that volatility is not constant. Volatility is, however, statistically persistent, i.e.,
volatility trends: if it is volatile today, it should continue to be volatile tomorrow.
This is also known as volatility clustering and can be seen in Fig. 7.6. This is a plot
of the logarithmic returns of USDKES since June 1995 using daily data.

7.2.1 How it Works

The variance swap is a contract in which two parties agree to exchange cash flows
based on the measured variance of a specified underlying asset during a certain time
period. On the trade date, the two parties agree on the strike price of the contract
(the reference level against which cash flows are exchanged), as well as the number
of units in the transaction.

Variance swaps or variance futures (also called variance contracts) are derivative
instruments offering pure exposure to daily realised future variance. Variance is the
square of volatility (usually denoted by the Greek symbol σ2). At expiration, the
swap buyer receives a payoff equal to the difference between the annualised variance
of logarithmic stock returns and the swap rate fixed at the outset of the contract. The
swap rate (or delivery price) can be seen as the fixed leg of the swap and is chosen
such that the contract has zero present value.
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Figure 7.5: 3 Month Historical volatility for A: USDZAR and B: USDKES.
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Figure 7.6: Logarithmic returns for USDKES.

In short, a variance swap is not really a swap at all but a forward contract on
realised annualised variance. A long position’s payoff at expiration is equal to [DD 99]

V NA
[

σ2
R − Kvar

]

(7.3)

where V NA is the Variance Notional Amount, σ2
Ris the annualised non-centered re-

alised variance of the daily logarithmic returns on the index level and Kvar is the
delivery price. Note that V NA is the notional amount of the swap in Rand per an-
nualised variance point. The holder of a variance swap at expiration receives V NA
currency for every point by which the underlying’s realised variance has exceeded the
variance delivery price. The “swap” is diagrammatically depicted in Fig. 7.7.

A capped variance swap is one where the realised variance is capped at a predefined
level. From Eq. (7.3) we then have

V NA
[

min
(

cap, σ2
R

)

− Kvar

]

.

The realised variance is defined by

σ2
R =

252

n

n
∑

i=1

[

ln

(

Si

Si−1

)]2

(7.4)

with Si the index level and n the number of data points used to calculate the variance].
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Figure 7.7: The variance swap.

If we scrutinised Eq. (7.4), we see that the mean logarithmic return is dropped
if we compare this equation with the mathematically correct equation for variance.
Why? Firstly, its impact on the realised variance is negligible. Secondly, this omis-
sion has the benefit of making the payoff perfectly additive1. Another reason for
ditching the mean return is that it makes the estimation of variance closer to what
would affect a trader’s profit and loss. The fourth reason is that zero-mean volatil-
ities/variances are better at forecasting future volatilities. Lastly Figlewski argues
that, since volatility is measured in terms of deviations from the mean return, an
inaccurate estimate of the mean will reduce the accuracy of the volatility calculation
[Fi 94]. This is especially true for short time series like 1 to 3 months (which are the
time frames used by most traders to estimate volatilities).

Note, historical volatility is usually taken as the standard deviation whilst above
we talk about the variance. The question is: why is standard deviation rather than
variance often a more useful measure of variability? While the variance (which is the
square of the standard deviation) is mathematically the “more natural” measure of
deviation, many people have a better “gut” feel for the standard deviation because
it has the same dimensional units as the measurements being analyzed. Variance is
interesting to scientists, because it has useful mathematical properties (not offered by
standard deviation), such as perfect additivity (crucial in variance swap instrument
development). However, volatility is directly proportional variance.

1Suppose we have the following return series: 1%, 1%, -1%, -1%. Using variance with the sample
mean, the variance over the first two observations is 0, and the variance over the last two observations
is zero. However the total variance with sample mean over all 4 periods is 0.01333%, which is clearly
not zero. If we assumed the sample mean to be zero, we get perfect variance additivity.
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Figure 7.8: Option sensitivity to volatility (Vega) per at the money (S = K) index
level for 13 options with strikes ranging from 70% to 130% in increments of 5%.

7.2.2 Variance Swap Pricing in Theory

The price of the variance swap per variance notional at the start of the contract is the
delivery variance. So how do we find the delivery price such that the swap is immune
to the underlying index level? We start by deriving a static hedge.

Consider the following ingenious argument. We know that the sensitivity of an
option to volatility, Vega, is centered (like the Gaussian bell curve) around the strike
price and will thus change daily according to changes in the underlying’s level. We
show the Vega for different strikes in Fig. 7.8. Also evident: the higher the strike, the
larger the Vega. If we can create a portfolio of options with a constant Vega, we will be
immune to changes in the stock or index level — a static hedge. From Fig. 7.8 we see
that the contribution of low-strike options to the aggregate Vega is small compared to
high-strike options. Therefore, a natural idea is to increase the weights of low-strike
options and decrease the weights of high-strike options. A sensible first guess is to
weight each option Vega with the corresponding inverse strike. By induction, it turns
out that the Vega is constant for a portfolio of options inversely weighted by the
square of their strikes — shown in Fig. 7.9. This hedge is independent of the stock
level and time.

From the previous argument we deduce that the fair price of a variance swap2

2The fair price of a variance swap, given that it is the price of variance going forward, it is also
referred to as the fair value of future variance. This is an intuitive rational for the forward factor,
e(rd−rf )T in equation (7.5).
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Figure 7.9: A portfolio of 13 options with Vega equally weighted, inversely weighted
by their strikes and also inversely weighted by the square of their strikes.

is the value of a static option portfolio, including long positions in out-the-money
(OTM) options, for all strikes from 0 to infinity. The weight of every option in this
portfolio is the inverse square of its strike. The theoretical fair delivery value at time
t = 0, for a variance swap maturing at time t = T , is then given by [DD 99, BS 05]

Kvar =
2

T

[

(rd − rf ) T −
(

S

F
e(rd−rf )T − 1

)

− ln

(

S

F

)

+e(rd−rf )T





F
∫

0

P (K)

K2
dK +

∞
∫

F

C(K)

K2
dK







 (7.5)

Here F is the approximate at-the-money forward stock index level with risk-free
interest rate r and dividend yield d. F marks the boundary between the liquid put
options P (K) and call options C(K) of the same expiry time T with strikes K. Kvar

is the fair variance and we see from Eq. (7.5) it is defined in terms of an indefinite
integral expression.



CHAPTER 7. COMPLEX CURRENCY DERIVATIVES 177

7.2.3 Pricing in Practice

In practice, integrals can be approximated by summations. Demeterfi and Derman

et. al. showed that the discrete version of Eq. (7.5) is given by [DD 99]

Kvar =
2

T



A + e(rd−rf )T





F
∫

0

P (K)

K2
dK +

∞
∫

F

C(K)

K2
dK









where we need to integrate over the whole strike range. The discrete version is given
by

Kvar =
2e(rd−rf )T

T

(

n=F
∑

i=1

Pi(Ki)

K2
i

∆Ki +
∞

∑

i=n+1

Ci(Ki)

K2
i

∆Ki

)

(7.6)

with

A = (rd − rf ) T −
(

S

F
e(rd−rf )T − 1

)

− ln

(

S

F

)

.

The fair delivery variance in Eq. (7.6) approaches the theoretical fair delivery vari-
ance, in (7.5), from below, and converges in the limit as the strike increments approach
zero and the number of options tend to infinity.

As with any numerical estimation of an indefinite integral expression such as Eq.
(7.5), the optimum strip width, and integrand range limits, for good accuracy must
be established. This brings two issues to the fore

• The strikes trade in standard fix spacings3 ∆K that are not infinitesimal small.
This introduces a discretisation error4 in the approximation of the fair variance.

• Only a limited number of option strikes are available. The strike range is finite.
This introduces a truncation error in the approximation of the fair variance.

Derman et al addresses the discretisation problem by numerically approximating
the fair delivery variance using the fact that the fair variance can be replicated by a
log contract of the form

f(FT ) =
2

T

[

FT

F0

− log
FT

F0

− 1

]

(7.7)

Here f(FT ) is the maturity T payoff from the long position in the forward price F , and
short position in the log contract. At the inception of the swap, the log contract in
(7.7), is equivalent to the fair delivery variance defined by (7.5). Since there is no log

3For example for index options, the strike spacing are 50 index points
4We implicitly use the term error, here and not uncertainty. This is done because an error implies

that
the theory /true value is known, whereas uncertainty do not.
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Figure 7.10: Fair delivery variances, Eq. (7.5) (blue) versus Eq. (7.7) (yellow) as a
function of the number of options.

contract traded, the log contract is approximated using piecewise linearly weighted
options.

It is the piecewise linear approximation (really super-replication) to equation (7.7)
that gives the option weightings such that convergence to the accurate delivery vari-
ance is obtained quicker using an minimal amount of strike spacing, or number of
options (See Fig. 7.10).

The delivery variance, using a limited number of options, according to Derman et

al, is then

Kvar(0, T ) =
2

T

(

n=F
∑

i=1

wiP Pi(Ki) +
∞

∑

i=n

wiCCi(Ki)

)

(7.8)

with piecewise linear recurring option weightings of

wiP =
f(Ki+1) − f(Ki)

Ki − Ki+1

−
i−1
∑

j=0

wjP ; wiC =
f(Ki+1) − f(Ki)

Ki+1 − Ki+1

−
i−1
∑

j=0

wjC

The Derman et al. delivery variance in (7.8) ’super replicates’ the theoretical fair
delivery variance given in (7.5), but only in the limited strike range from lowest to
highest strike. Moreover, the Vega is constant only within the chosen strike limits of
the underlying.
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7.2.4 Limit Tests

The Derman weighting scheme for quick strike convergence with strike spacing, is
used to look at the sensitivity of the option strike range on the fair variance accuracy.
It is clear that the fair variance accuracy is more sensitive to the strike range, than
the strike spacings. In other words, the accuracy of the fair variance, is more prone
to the truncation errors. We also note that

• For a small number of symmetrical options (<20) and the lower the put bound
strike, the more over-estimated the fair variance. This over-estimation is less
pronounced the higher the number of symmetrical options.

• For a low put bound strike (<40%) and a higher number of symmetrical options,
the more underestimated the fair variance. This under-estimation is consider-
ably less pronounced the higher the left wing bound.

Moreover, the greater the strike range, the more the approximated fair variance
approaches the theoretical fair variance from below. Truncation thus underestimates
the fair variance.

Also, the higher the number of options, or the smaller the strike spacing, the more
the approximate variance approaches the fair variance from above. Discretisation
overestimates the fair variance. This is consistent with the findings of Jiang and

Tian5 [JT 07]
From all of the above we conclude that, the strike spacing, discretisation, and the

strike range, truncation errors, are a trade-off between over and under estimation of
the fair variance. Finding the strike spacing, and strike range optimum pair that
minimises the fair variance accuracy, is a three dimensional problem.

7.2.5 Volatility Indices

7.2.6 VIX

VIX is the ticker symbol for the Chicago Board Options Exchange Market Volatility
Index, a popular measure of the implied volatility of S&P 500 index options. Often
referred to as the fear index or the fear gauge, it represents one measure of the
market’s expectation of stock market volatility over the next 30 day period. The VIX
was introduced during 1993.

On September 22, 2003, the Chicago Board Options Exchange made some major
changes to the way the implied volatility index (VIX) is constructed. It is now based
on the more liquid S&P 500 index options, instead of the S&P 100. Even more

5In fact, Jiang and Tian found that: “When volatility is low (high), the underlying index level
is less (more) likely to move beyond the range of option strikes, so that in this case, the discreti-
sation (truncation) dominates the truncation error. In order to quantify the error involved with
approximating the fair variance. It is important to know the direction of the uncertainty”
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important is a change in the methodology for constructing the index. The old index
was a weighted average of implied volatilities inverted from the Black-Scholes option
pricing model. The new index eliminates this dependence on a specific model and uses
a model-free approach similar to the one proposed in Britten-Jones and Neuberger
(2000).

The Old VIX

The old VIX index is based on the Black-Scholes implied volatility of S&P 100 options.
To construct the old VIX, two puts and two calls for strikes immediately above and
below the current index are chosen. Near maturities (greater than eight days) and
second nearby maturities are chosen to achieve a complete set of eight options. By
inverting the Black-Scholes pricing formula using current market prices, an implied
volatility is found for each of the eight options. These volatilities are then averaged,
first the puts and the calls, then the high and low strikes. Finally, an interpolation
between maturities is done to compute a 30 calendar day (22 trading day) implied
volatility.

Because the Black-Scholes model assumes the index follows a geometric Brownian
motion with constant volatility, when in fact it does not, the old VIX will only ap-
proximate the true risk-neutral implied volatility over the coming month. In reality
the price process is likely more complicated than geometric Brownian motion. Lim-
iting it to a very specific form and deducing an implied volatility from market prices
may lead to substantial error in the estimation. Since the S&P 100 index options are
American, an approximation is involved to compute the implied volatility.

The New VIX

The VIX is the square root of the par variance swap rate for a 30 day term initiated
today. Note that the VIX is the volatility of a variance swap and not that of a
volatility swap (volatility being the square root of variance). A variance swap can be
perfectly statically replicated through vanilla puts and calls whereas a volatility swap
requires dynamic hedging. The VIX is the square-root of the risk neutral expectation
of the S&P 500 variance over the next 30 calendar days. The VIX is quoted as an
annualized variance.

Note the following: The VIX is quoted in percentage points and translates,
roughly, to the expected movement in the S&P 500 index over the next 30-day period,
which is then annualized. For example, if the VIX is 15, this represents an expected
annualized change of 15% over the next 30 days; thus one can infer that the index
option markets expect the S&P 500 to move up or down 15%/

√
12 = 4.33% over

the next 30-day period. That is, index options are priced with the assumption of a
68% likelihood (one standard deviation) that the magnitude of the S&P 500’s 30-day
return will be less than 4.33% (up or down).
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Figure 7.11: The SAVI fear guage.

One can trade futures on the VIX.

7.2.7 SAVI

There are currently volatility indices on the TOP40 index, the USDZAR exchange
rate and white maize.

SAVI

The old SAVI was launched, in 2007, as an index designed to measure the market’s
expectation of the 3-month volatility. The SAVI is based on the FTSE/JSE Top40
index level and it is determined using the at-the-money volatilities. Since it is well
documented that there exist a negative correlation between the underlying index level
and its volatility, the SAVI can be though of as a “fear” gauge

The old SAVI was calculated on a daily basis, via polling the market. The polled
at-the-money volatilities are then used to calculate the 3-month at-the-money vola-
tility. The average 3-month at-the-money volatility as determined from the polled
volatilities, were then published as the SAVI.

The SAVI was updated two years later, in 2009, to reflect a new way of measuring
the expected 3-month volatility. The new SAVI is also based on the FTSE/JSE Top40
Index, but it is not only determined using the at-the-money volatilities but also using
the volatility skew. Given that the volatility skew is the market’s expectation of
a crash, the new SAVI can be thought of as a more efficient “fear” gauge, since it
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incorporates a market crash protection volatility premium. The “new” SAVI is thus
similar to the new VIX. The SAVI is plotted in Fig. 7.11

Figure 7.12: A volatility index is forward looking.

Figure 7.13: The SAVI-$.

SAVI-$

The SAVI-$ is merely an expansion on the work that was done with the SAVI-T40
that was launched at the start of 2007. With the SAVI-$ we are constructing a 3
month forward looking index. In essence we want to know what the market volatility
is three month from today every day. On the JSE we don’t have option expiring every
day and thus can’t reference the volatility for one of the contracts that is trading on
our market. We have 4 expiry dates per underlying contract each year. This means
that we have an expiry date every three months. That means that the time period
that we are interested in will fall within the period of our next expiry and the one
just after that (then next-near expiry), as can be seen in Fig. 7.12.
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In essence this serves as a volatility indicator. Because it’s a forward looking
indicator and not based entirely on the historic values but rather more on people’s
opinions one will be able to notice that as people get more fearful the value of the
indicator will start to rise. This can be clearly seen in the graph plotted in Fig. 7.13

The SAVI-$ is a very useful indicator to find out what the market sentiment is
and how people see our stability compared the Dollar. Bellow we can see how the
fear indicator rises as the rand weakens and the markets lose confidence in the value
of the rand.
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7.3 Range Accruels and Corridors

From [BO 10]
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From [Ta 10]
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From [Wy 06]
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7.4 Quantos or Currency Translated Options

From [Ta 10]



CHAPTER 7. COMPLEX CURRENCY DERIVATIVES 195

.



CHAPTER 7. COMPLEX CURRENCY DERIVATIVES 196

From [Ha 07]
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Chapter 8

Implied Binomial Trees

Bruno Dupire stated

“Implied volatility is the wrong number to put into the wrong formula
to obtain the correct price. Local volatility on the other hand has the
distinct advantage of being locally consistent. It is a volatility function
which produces, via the Black-Scholes equation, prices which agree with
those of the exchange traded options”.

Given the computational complexity of stochastic volatility models and the diffi-
culty of fitting parameters to the current prices of vanilla options, practitioners sought
a simpler way of pricing exotic options consistently with the volatility skew [Ga 06].

8.1 Introduction

Most derivative markets exhibit persistent patterns of volatilities varying by strike.
In some markets, those patterns form a smile curve. In others, such as equity index
options markets, they form more of a skewed curve. This has motivated the name
“volatility skew”. In practice, either the term “volatility smile” or “volatility skew”
(or simply skew) may be used to refer to the general phenomena of volatilities varying
by strike.

The aim with a stochastic volatility model is to incorporate the empirical obser-
vation that volatility appears not to be constant and indeed varies, at least in part,
randomly. The idea is to make the volatility itself a stochastic process. In this docu-
ment we present the exact solutions for a European option using both constant and
Heston volatility.

In 1994, Dupire showed that if the spot price follows a risk-neutral random walk
and if arbitrage-free market prices for European vanilla options are available for all
strikes K and expiries T , then the local volatility can be extracted analytically from
these option prices. Remember, it is unlikely that Dupire ever thought of local volati-
lity as representing a model of how volatilities actually evolve. Rather, it is likely that

204
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they thought of local volatilities as representing some kind of average over all possible
instantaneous volatilities in a stochastic volatility world. Local volatility model there-
fore do not represent a separate class of volatility models; the idea is more to make a
simplifying assumption that allows practitioners to price exotic options consistently
with the know prices of vanilla options.

8.2 Questions to be Considered

We can estimate the market view using the volatility which is implied by the market
prices. Using this real information, we can simulate the future asset price path with
its corresponding implied, local and stochastic volatility.

• How useful is it?

• Can we take advantage of this information to obtain a more accurate price for
an exotic option and have a better understanding of hedging?

8.3 Local Volatility

Given the prices of call or put options across all strikes and maturities, we may deduce
the volatility which produces those prices via the full Black-Scholes equation. Note
that

• This function has come to be known as local volatility.

• Unlike the naive volatility produced by applying the Black-Scholes formulae to
market prices, the local volatility is the volatility implied by the market prices
and the one factor Black-Scholes.

In order to obtain a theoretical value for vanilla options, Black and Scholes as-
sumed the following stochastic behaviour for the underlying stock price

dS = µSdt + σSdW (8.1)

where dW denotes a Wiener process or random walk or Brownian motion. Black &

Scholes used this together with their other assumptions to derive the Black & Scholes

formula.

8.3.1 Dupire’s Formula

An extention to this was introduced by Dupire in 1994 [Du 94]. He allowed the
volatility of the underlying to depend on both strike and time. The stochastic process
used to model the behaviour of the underlying asset, is a simple generalisation of Eq.
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8.1 where we extend the Black & Scholes model to make full use of its diffusion setting
without increasing the dimension of uncertainty

dS = µSdt + σ(S, t)SdW. (8.2)

The risk neutral process for the underlying asset is found by setting µ = rd − rf in
Eq. 8.2, where rd and rf denote the domestic and foreign interest rates in continuous
format respectively. The parameter σ(S, t) is the volatility of the underlying, when
its value is S at time t. It is known as the instantaneous or local volatility and is
assumed to be a deterministic function. Equation 8.2 is a differential equation that
holds for a small time increment dt. σ(S, t) is thus the volatility that holds over this
short time interval. It should not be confused with the implied volatility, defined
earlier. This instantaneous volatility can be calibrated to observed market values of
vanilla options.

If arbitrage-free market prices for European vanilla options are available for all
strikes K and expiries T , then σl(K, T ) can be extracted analytically from these
option prices. Dupire showed that

∂C

∂T
= σl(K, T )

K2

2

∂2C

∂K2
− (rd − rf )K

∂C

∂K
− rfC (8.3)

where C denotes a European call with strike K and expiry T and σl(K,T ) is the local
volatility.

If we now rearrange Eq. 8.3 we get

σ2

l (K, T ) =
∂C
∂T

+ (rd − rf )K
∂C
∂K

+ rfC
K2

2

∂2C
∂K2

. (8.4)

We can view this formula as a definition of the local volatility function regardless of
what kind of process (stochastic volatility for example) actually governs the evolution
of volatility.

We can further show that if C(S, K, σI , T ) is the Black & Scholes value for a Euro-
pean call with strike K, expiry T and implied volatility σI , making this substitution in
Eq. 8.4 gives us an alternative expression for local volatility in terms of the derivative
of the implied volatility

σ2

l (K, T ) =
σ2

I + 2σIτ
(

∂σI

∂T
+ (rd − rf )K

∂σI

∂K

)

(

1 + Kx∂σi

∂K

√
τ
)2

+ σ2

IK
2τ

(

∂2σI

∂K2 − x
(

∂σI

∂K

)2 √
τ
) (8.5)

with x defined in Eq. 6.18.
To implement any one these two equations, we need a volatility skew that is

deterministic, i.e. a formula that we can differentiate. If you do not have that you’ll
have to do the differentiation numerically.
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One potential problem of using the Dupire formula given in Eq. 8.4 is that, for
some financial instruments, the option prices of different strikes and maturities are
not available or are not enough to calculate the right local volatility. Another problem
is that, for strikes far in- or out-the-money, the numerator and denominator of this
equation may become very small, which could lead to numerical inaccuracies. Note,
the implied vol surface obviously has to be arbitrage free, which is equivalent to
showing that the Dupire local volatility is a real number (not a complex number).
Now, if you plug in the Dupire formula based on Call and Put prices then it may not
work so well mainly because call/put Vega is very small as soon as you move away
from the forward, resulting in numerical noise.

Gatheral has shown that we get a better formula if we describe everything in terms
of variances. This leads to

vL =
∂w

∂T

[

1 −
y

w

∂w

∂y
+

1

4

(

−
1

4
−

1

w
+

y2

w2

)(

∂w

∂y

)

2

+
1

2

∂2w

∂y2

]

−1

(8.6)

where

w = σ2

I

y = ln

(

K

FT

)

FT = forward of S

vl = σ2

L.

In summary, calculating the local volatility with the implied volatility gives us a
more accurate and stable result. Furthermore we can save huge amounts of computa-
tion time (30 times less). The last results tell us that a flat implied volatility surface
automatically yields a flat local volatility surface

8.4 Implied Binomial Trees

See article by Derman and Kani — “The Volatility Smile and Its Implied Tree.”
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[To 08] F. Tourrucôo, Considerations on approximate calibration of the SABR smile,
Universidade Federal do Rio Grande do Sul Working Paper, (2008)

[We 05] G. West, Calibration of the SABR Model in Illiquid Markets, Applied Ma-
thematical Finance, 12, No. 4, pp. 371-385, (December 2005)

[We 06] T. Weithers, Foreign Exchange: a Practical Guide to the FX Markets, Wiley

Finance (2006)

[Wi 98] P. Wilmott, Derivatives: the theory and practise of financial engineering,
John Wiley & Sons (1998)

[Wy 06] U. Wystup, FX Options and Structured Products, John Wiley & Sons (2006)

[Wy 08] U. Wystop, Vanna-Volga Pricing, MathFinance AG Waldems, Germany
(June 2008)

[Ya 01] Len Yates, Buying and Selling Volatility,
http://www.optionvue.com/Articles/ArticlesDirectory.htm

[Zh 97] P. G. Zhang, Exotic Options: A guide to second generation options, World

Scientific (1997)

[ZX 05] Jin Zhang and Yi Xiang, Implied Volatility Smirk, University of Hong Kong
Working Paper (2005)

Disclaimer

This publication is confidential, intended for the information of the addressee only and may not be reproduced in whole or

in part in any manner whatsoever, nor may copies be circulated or disclosed to any other party, without the prior written

consent of Absa Corporate and Merchant Bank (“Absa”).The report and any information which may have been given orally

by any director, other officer or duly authorised employee of Absa is based on information from sources believed to be

reliable, but is not guaranteed as to accuracy or completeness. Absa, its affiliates, directors and other officers disclaim any

responsibility for any acts or omissions arising as a result of any of the information gleaned from this report and/or for any

loss occasioned in any manner whatsoever in consequence of the information herein contained. Neither this report nor any

opinion expressed herein should be considered as an offer or allocation of an offer to sell or acquire any securities mentioned.

Absa, its affiliates, directors and officers reserve the right to hold positions in securities mentioned in this publication and

further reserve the right from time to time to provide or offer advisory banking or other financial services for or to receive

such services from any company mentioned in this report.




